Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0305143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008505

RESUMEN

Concrete structures are susceptible to cracking, which can compromise their integrity and durability. Repairing them with ordinary Portland cement (OPC) paste causes shrinkage cracks to appear in the repaired surface. Alkali-activated binders offer a promising solution for repairing such cracks. This study aims to develop an alkali-activated paste (AAP) and investigate its effectiveness in repairing concrete cracks. AAPs, featuring varying percentages (0.5%, 0.75%, 1%, 1.25%, 1.5%, and 1.75%) of polyethylene (PE) fibers, are found to exhibit characteristics such as strain hardening, multiple plane cracking in tension and flexure tests, and stress-strain softening in compression tests. AAP without PE fibers experienced catastrophic failure in tension and flexure, preventing the determination of its stress-strain relationship. Notably, AAPs with 1.25% PE fibers demonstrated the highest tensile and flexural strength, exceeding that of 0.5% PE fiber reinforced AAP by 100% in tension and 70% in flexure. While 1% PE fibers resulted in the highest compressive strength, surpassing AAP without fibers by 17%. To evaluate the repair performance of AAP, OPC cubes were cast with pre-formed cracks. These cracks were induced by placing steel plates during casting and were designed to be full and half-length with widths of 1.5 mm and 3 mm. AAP both with and without PE fibers led to a substantial improvement in compressive strength, reducing the initial strength loss of 30%-50% before repair to a diminished range of 2%-20% post-repair. The impact of PE fiber content on the compressive strength of repaired OPC cube is marginal, providing more flexibility in using AAP with any fiber percentage while still achieving effective concrete crack repair. Considering economic and environmental factors, along with observed mechanical enhancements, AAPs show promising potential for widespread use in concrete repair and related applications, contributing valuable insights to the field of sustainable construction materials.


Asunto(s)
Álcalis , Materiales de Construcción , Ensayo de Materiales , Polietileno , Polietileno/química , Álcalis/química , Fuerza Compresiva , Resistencia a la Tracción , Estrés Mecánico
2.
SAGE Open Med Case Rep ; 12: 2050313X241266813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071191

RESUMEN

Benign recurrent intrahepatic cholestasis is an autosomal recessive disorder presenting with intermittent episodes of cholestatic jaundice. The initial episode of benign recurrent intrahepatic cholestasis tends to occur within the first two decades of a patient's life. Episodes can occur unprompted but can often be precipitated by infections or pregnancy. We report an interesting case of a 13-year-old girl presented with recurrent intrahepatic cholestasis. The patient has a unique homozygous USP53 genetic mutation, the first patient to present with this mutation within the South Asian region. The patient was initially misdiagnosed as a case of autoimmune hepatitis, and when presenting to our set-up was diagnosed as a case of benign recurrent intrahepatic cholestasis. The patient has since been managed on medication and remains regular in follow-up, responding well to treatment.

3.
BMC Vet Res ; 20(1): 244, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849870

RESUMEN

BACKGROUND: Fowl adenovirus-4 is a causative agent of hydropericardium hepatitis syndrome (HHS) in chickens and has been frequently reported from many countries. Fowl adenoviruses cause severe disease and mortality in broiler and layer breeders in Azerbaijan. Therefore, in this study, pathological lesions and the dissemination of fowl adenovirus-4 into the visceral organs of infected birds were investigated as well as molecular characterisation of detected strains. For this, liver, heart and spleen from 20 necropsied chickens originated from a broiler breeder flock and a layer breeder flock were embeded on the FTA cards and the samples were analysed for adenovirus-DNA by PCR and sequencing. RESULTS: The findings of necropsy in both broiler and layer breeder chickens were similar, and the liver was severely effected showing hepatitis, and the heart with hydropericardium lesions. The kidneys were swollen with haemorrhages and small white foci on the surface of the spleens were noted. Intestinal congestion and ecchymotic hemorrhages were also observed in some birds. Fowl adenovirus-4-DNA was detected by PCR in all collected organs of 20 birds. The sequence analysis revealed that fowl adenovirus-4 present in Azerbaijan and close similarity of the hexon genes of the adenoviruses existing in the Middle East, North America, far east and Indian subcontinent were determined by phylogenetic analysis. However, sequence diversity was detected from the adenovirus strains circulating in Europe, North and South America. CONCLUSIONS: This study indicates the impact of fowl adenovirus-4 on the poultry health and production, and improved disease control and prevention strategies are necessary to reduce the HHS disease in chickens in Azerbaijan.


Asunto(s)
Infecciones por Adenoviridae , Pollos , Filogenia , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Infecciones por Adenoviridae/epidemiología , Azerbaiyán/epidemiología , Aviadenovirus/genética , Aviadenovirus/aislamiento & purificación , Aviadenovirus/clasificación , Hepatitis Viral Animal/virología , Hepatitis Viral Animal/patología , Hepatitis Viral Animal/epidemiología , ADN Viral/genética , Hígado/patología , Hígado/virología , Bazo/patología , Bazo/virología
4.
J Vet Sci ; 25(4): e45, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910307

RESUMEN

IMPORTANCE: Although the role of bovine coronavirus (BCoV) in calf diarrhea and respiratory disorders is well documented, its contribution to neurological diseases is unclear. OBJECTIVE: This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs. METHODS: An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests. RESULTS: BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction. Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses. CONCLUSIONS AND RELEVANCE: The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.


Asunto(s)
Encéfalo , Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Filogenia , Animales , Bovinos , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/patología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/patología , Encéfalo/virología , Encéfalo/patología , Turquía/epidemiología , Brotes de Enfermedades/veterinaria , Neumonía Viral/veterinaria , Neumonía Viral/virología , Neumonía Viral/patología , Enfermedades del Sistema Nervioso/veterinaria , Enfermedades del Sistema Nervioso/virología , Enfermedades del Sistema Nervioso/patología
5.
Front Immunol ; 15: 1352022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698856

RESUMEN

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Asunto(s)
Factor H de Complemento , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Gripe Humana , Unión Proteica , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Animales , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/metabolismo , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Sitios de Unión , Gripe Aviar/virología , Gripe Aviar/inmunología , Gripe Aviar/metabolismo , Aves/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología
6.
Vet Sci ; 11(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38393111

RESUMEN

Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.

7.
Viruses ; 16(2)2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400091

RESUMEN

Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/epidemiología , Antivirales/farmacología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...