Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(4): e9956, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37021082

RESUMEN

In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing Spiroplasma in the African Monarch, Danaus chrysippus. In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the D. chrysippus do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either Spiroplasma-mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.

2.
Biol Lett ; 18(6): 20210639, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642381

RESUMEN

Warning coloration provides a textbook example of natural selection, but the frequent observation of polymorphism in aposematic species presents an evolutionary puzzle. We investigated biogeography and polymorphism of warning patterns in the widespread butterfly Danaus chrysippus using records from citizen science (n = 5467), museums (n = 8864) and fieldwork (n = 2586). We find that polymorphism in three traits controlled by known mendelian loci is extensive. Broad allele frequency clines, hundreds of kilometres wide, suggest a balance between long-range dispersal and predation of unfamiliar morphs. Mismatched clines for the white hindwing and forewing tip in East Africa are consistent with a previous finding that the black wingtip allele has spread recently in the region through hitchhiking with a heritable endosymbiont. Light/dark background coloration shows more extensive polymorphism. The darker genotype is more common in cooler regions, possibly reflecting a trade-off between thermoregulation and predator warning. Overall, our findings show how studying local adaptation at the global scale provides a more complete picture of the evolutionary forces involved.


Asunto(s)
Mariposas Diurnas , Pigmentación , Adaptación Biológica , Animales , Evolución Biológica , Mariposas Diurnas/genética , Ciencia Ciudadana , Frecuencia de los Genes , Fenotipo , Conducta Predatoria , Selección Genética
3.
Biol J Linn Soc Lond ; 133(3): 671-684, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34539176

RESUMEN

Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.

4.
Insects ; 10(9)2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505824

RESUMEN

Danaus chrysippus (L.), one of the world's commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma ixodetis, has invaded, causing female-biased populations to predominate. In ssp. chrysippus, inside the Rift only, an autosome carrying a colour locus has fused with the W chromosome to create a neo-W chromosome. A total of 40-100% of Rift females are neo-W and carry Spiroplasma, thus transmitting a linked, matrilineal neo-W, MK complex. As neo-W females have no sons, half the mother's genes are lost in each generation. Paradoxically, although neo-W females have no close male relatives and are thereby forced to outbreed, MK restricts gene flow between subspecies and may thus promote speciation. The neo-W chromosome originated in the Nairobi region around 2.2 k years ago and subsequently spread throughout the Rift contact zone in some 26 k generations, possibly assisted by not having any competing brothers. Our work on the neo-W chromosome, the spread of Spiroplasma and possible speciation is ongoing.

5.
Proc Biol Sci ; 283(1835)2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27440667

RESUMEN

Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process.


Asunto(s)
Mariposas Diurnas/genética , Especiación Genética , Pigmentación/genética , Cromosomas Sexuales/genética , Animales , Color , Femenino , Flujo Génico , Genética de Población , Kenia , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...