Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(6): 2254-2261, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021482

RESUMEN

Here we report on the growth of thin crystalline films of the metastable phase GeTe2. Direct observation by transmission electron microscopy revealed a Te-Ge-Te stacking with van der Waals gaps. Moreover, electrical and optical measurements revealed the films exhibted semiconducting properties commensurate with electronics applications. Feasibility studies in which device structures were fabricated demonstrated the potential application of GeTe2 as an electronic material.

2.
ACS Nano ; 17(7): 6545-6554, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36847351

RESUMEN

In-plane heterostructures of transition metal dichalcogenides (TMDCs) have attracted much attention for high-performance electronic and optoelectronic devices. To date, mainly monolayer-based in-plane heterostructures have been prepared by chemical vapor deposition (CVD), and their optical and electrical properties have been investigated. However, the low dielectric properties of monolayers prevent the generation of high concentrations of thermally excited carriers from doped impurities. To solve this issue, multilayer TMDCs are a promising component for various electronic devices due to the availability of degenerate semiconductors. Here, we report the fabrication and transport properties of multilayer TMDC-based in-plane heterostructures. The multilayer in-plane heterostructures are formed through CVD growth of multilayer MoS2 from the edges of mechanically exfoliated multilayer flakes of WSe2 or NbxMo1-xS2. In addition to the in-plane heterostructures, we also confirmed the vertical growth of MoS2 on the exfoliated flakes. For the WSe2/MoS2 sample, an abrupt composition change is confirmed by cross-sectional high-angle annular dark-field scanning transmission electron microscopy. Electrical transport measurements reveal that a tunneling current flows at the NbxMo1-xS2/MoS2 in-plane heterointerface, and the band alignment is changed from a staggered gap to a broken gap by electrostatic electron doping of MoS2. The formation of a staggered gap band alignment of NbxMo1-xS2/MoS2 is also supported by first-principles calculations.

3.
Adv Mater ; 34(44): e2203250, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36086880

RESUMEN

The diverse series of transition metal dichalcogenide (TMDC) materials has been employed in various optoelectronic applications, such as photodetectors, light-emitting diodes, and lasers. Typically, the detection or emission range of optoelectronic devices is unique to the bandgap of the active material. Therefore, to improve the capability of these devices, extensive efforts have been devoted to tune the bandgap, such as gating, strain, and dielectric engineering. However, the controllability of these methods is severely limited (typically ≈0.1 eV). In contrast, alloying TMDCs is an effective approach that yields a composition-dependent bandgap and enables light emissions over a wide range. In this study, a color-tunable light-emitting device using compositionally graded TMDC alloys is fabricated. The monolayer WS2 /WSe2 alloy grown by chemical vapor deposition shows a spatial gradient in the light-emission energy, which varies from 2.1 to 1.7 eV. This alloy is incorporated in an electrolyte-based light-emitting device structure that can tune the recombination zone laterally. Thus, a continuous and reversible color-tunable light-emitting device is successfully fabricated by controlling the light-emitting positions. The results provide a new approach for exploring monolayer semiconductor-based broadband optical applications.

4.
ACS Nano ; 16(8): 13069-13081, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35849128

RESUMEN

The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T'-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T'-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T' and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T'-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T'-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T'-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T' structure, was clearly observed. Furthermore, the grown 1T'-phase WS2 showed superconductivity with the transition temperature in the 2.8-3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.

5.
ACS Nano ; 15(12): 19225-19232, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34843228

RESUMEN

We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.

6.
Nanoscale ; 13(21): 9686-9697, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34018526

RESUMEN

Nanoelectronics require semiconductor nanomaterials with high electron mobility like Ge nanolayers. Phonon and electron states in nanolayers undergo size-dependent changes induced by confinement and surface effects. Confined electrons and acoustic phonons determine layer optical, electric and thermal properties. Despite scientific and practical significance, their experimental studies in individual nanolayers are still lacking. Thanks to recent progress in the fabrication of high-quality nanolayers, here, we report the thickness dependencies of Raman spectra of acoustic phonons and optical spectra of electrons confined in germanium-on-insulator (GeOI) nanolayers with thicknesses TGeOI = 1-20 nm. We show that for TGeOI > 5 nm, both GeOI acoustic phonon Raman spectra and the E1 electron energy gap display dependencies on TGeOI which are reasonably described by the corresponding phonon and electron confinement theories. Accordingly, TGeOI can be probed using acoustic phonon Raman spectra at TGeOI > 5 nm. However, both confinement theories fail to describe GeOI thickness dependencies at TGeOI < 5 nm. We attribute this discrepancy to an increased influence of the Ge-GeO2 interface disorder with TGeOI reduction. The acoustic phonon data suggest a decrease of Ge normal-to-the-layer longitudinal sound velocity. Generation of interface-disorder-induced dispersionless phonons might contribute to this. The change in GeOI phonon properties at TGeOI < 5 nm might influence E1(TGeOI) dependence via a change in the GeOI electron-phonon interaction. We demonstrate that the Al2O3 coating improves the agreement between experimental and confinement theories, probably, via reduction of disorder at the Ge-GeOx-Al2O3-interface. Our results are important for control of nanolayer-confined electrons and phonons with benefits for modern and future nanoelectronic devices.

7.
Nanoscale ; 13(19): 8784-8789, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33928997

RESUMEN

To maximize the potential of transition-metal dichalcogenides (TMDCs) in device applications, the development of a sophisticated technique for stable and highly efficient carrier doping is critical. Here, we report the efficient n-type doping of monolayer MoS2 using KOH/benzo-18-crown-6, resulting in a doped TMDC that is air-stable. MoS2 field-effect transistors show an increase in on-current of three orders of magnitude and degenerate the n-type behaviour with high air-stability for ∼1 month as the dopant concentration increases. Transport measurements indicate a high electron density of 3.4 × 1013 cm-2 and metallic-type temperature dependence for highly doped MoS2. First-principles calculations support electron doping via surface charge transfer from the K/benzo-18-crown-6 complex to monolayer MoS2. Patterned doping is demonstrated to improve the contact resistance in MoS2-based devices.

8.
Sci Rep ; 9(1): 17678, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776373

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenides have attracted a considerable amount of attention because of their potential for post-silicon device applications, as well as for exploring fundamental physics in an ideal 2D system. We tested the chemical vapour deposition (CVD) of WS2 using the gaseous precursors WF6 and H2S, augmented by the Na-assistance method. When Na was present during growth, the process created triangle-shaped WS2 crystals that were 10 µm in size and exhibited semiconducting characteristics. By contrast, the Na-free growth of WS2 resulted in a continuous film with metallic behaviour. These results clearly demonstrate that alkali-metal assistance is valid even in applications of gas-source CVD without oxygen-containing species, where intermediates comprising Na, W, and S can play an important role. We observed that the WS2 crystals grown by gas-source CVD exhibited a narrow size distribution when compared with crystals grown by conventional solid-source CVD, indicating that the crystal nucleation occurred almost simultaneously across the substrate, and that uniform lateral growth was dominant afterwards. This phenomenon was attributed to the suppression of inhomogeneous nucleation through the fast and uniform diffusion of the gas-phase precursors, supported by the Na-assisted suppression of the fast reactions between WF6 and H2S.

9.
Nanoscale ; 11(42): 19700-19704, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31460548

RESUMEN

Atomically thin transition-metal dichalcogenides (TMDs) are attracting great interest for future electronic applications. Even though much effort has been devoted to preparing large-area, high-quality TMDs over the past few years, the samples are usually grown on substrate surfaces. Here, we demonstrate the direct growth of a MoS2 monolayer at the interface between a Au film and a SiO2 substrate. MoS2 grains were nucleated below Au films deposited on SiO2via interface diffusion and then grown into a continuous MoS2 film. By programming the Au pattern deposited, controlled growth of MoS2 with the desired size and geometry was achieved over preferred locations, facilitating its integration into functional field-effect transistors. Our findings elucidate the fabrication of a two-dimensional semiconductor at the interface of bulk three-dimensional solids, providing a novel means for establishing a clean interface junction. It also offers a promising alternative to the site-selective synthesis of TMDs, which is expected to aid the fabrication of TMD-based nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...