Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652549

RESUMEN

CD8+ T cell dysfunction impedes anti-tumor immunity in solid cancers but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional co-activator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend upon oncogene-mediated ECM composition and remodeling.

2.
Cancer Res ; 84(7): 977-993, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335278

RESUMEN

Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin ß1 (ITGß1). Furthermore, activated ITGß1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE: Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin ß1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.


Asunto(s)
Neoplasias Pulmonares , Sarcoma , Humanos , Animales , Ratones , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células Endoteliales/metabolismo , Pez Cebra/metabolismo , Actinas , Integrina beta1 , Hipoxia , Sarcoma/metabolismo , Pulmón/patología
3.
Cancer Immunol Res ; 12(1): 91-106, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37931247

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Macrófagos Asociados a Tumores/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Microambiente Tumoral
4.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711890

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.

5.
Cell Mol Gastroenterol Hepatol ; 13(6): 1673-1699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245687

RESUMEN

BACKGROUND & AIMS: Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS: Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS: We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS: Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Fibroblastos/metabolismo , Virus del Sarcoma Murino de Kirsten/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Sci Rep ; 12(1): 515, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017609

RESUMEN

Since the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the "Criollo") horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the "gait-keeper" DMRT3 mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly available PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the "gait-keeper" DMRT3 allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant "gait-keeper" allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing the DMRT3 locus to this day. The lack of the detectable signature of selection associated with the DMRT3 in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (including CHRM5, CYP2E1, MYH7, SRSF1, PAM, PRN and others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.


Asunto(s)
Caballos , Animales
7.
Clin Cancer Res ; 27(7): 2023-2037, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495315

RESUMEN

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/patología , Proteínas Hedgehog/fisiología , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Proteínas Hedgehog/antagonistas & inhibidores , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Transducción de Señal/fisiología , Microambiente Tumoral
8.
Cancer Discov ; 10(3): 422-439, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911451

RESUMEN

Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFß ligands and, accordingly, their depletion reprogramed the fibroblast population, with loss of tumor-restraining, smooth muscle actin-expressing fibroblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6, and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4+ T-cell responses. Our data point to new mechanisms regulating fibroblast differentiation in pancreatic cancer and support the notion that fibroblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. SIGNIFICANCE: Here, we describe an unexpected cross-talk between Tregs and fibroblasts in pancreatic cancer. Treg depletion resulted in differentiation of inflammatory fibroblast subsets, in turn driving infiltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.See related commentary by Aykut et al., p. 345.This article is highlighted in the In This Issue feature, p. 327.


Asunto(s)
Carcinogénesis/genética , Neoplasias Pancreáticas/genética , Receptores CCR1/genética , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Carcinogénesis/inmunología , Quimiocina CCL3/genética , Quimiocina CCL8/genética , Quimiocinas CC/genética , Modelos Animales de Enfermedad , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Ratones , Páncreas/inmunología , Páncreas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/genética , Neoplasias Pancreáticas
9.
Nat Cancer ; 1(11): 1097-1112, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296197

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor microenvironment that renders it largely refractory to immunotherapy. We implemented a multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, and non-malignant samples, we uncovered a complex network of immune-suppressive cellular interactions. These experiments revealed heterogeneous expression of immune checkpoint receptors in individual patient's T cells and increased markers of CD8+ T cell dysfunction in advanced disease stage. Tumor-infiltrating CD8+ T cells had an increased proportion of cells expressing an exhausted expression profile that included upregulation of the immune checkpoint TIGIT, a finding that we validated at the protein level. Our findings point to a profound alteration of the immune landscape of tumors, and to patient-specific immune changes that should be taken into account as combination immunotherapy becomes available for pancreatic cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pancreáticas , Linfocitos T CD8-positivos/patología , Humanos , Neoplasias Pancreáticas/patología , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA