Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Cell Biol ; 14(12): 1336-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23178883

RESUMEN

Ca(2+) flux across the mitochondrial inner membrane regulates bioenergetics, cytoplasmic Ca(2+) signals and activation of cell death pathways. Mitochondrial Ca(2+) uptake occurs at regions of close apposition with intracellular Ca(2+) release sites, driven by the inner membrane voltage generated by oxidative phosphorylation and mediated by a Ca(2+) selective ion channel (MiCa; ref. ) called the uniporter whose complete molecular identity remains unknown. Mitochondrial calcium uniporter (MCU) was recently identified as the likely ion-conducting pore. In addition, MICU1 was identified as a mitochondrial regulator of uniporter-mediated Ca(2+) uptake in HeLa cells. Here we identified CCDC90A, hereafter referred to as MCUR1 (mitochondrial calcium uniporter regulator 1), an integral membrane protein required for MCU-dependent mitochondrial Ca(2+) uptake. MCUR1 binds to MCU and regulates ruthenium-red-sensitive MCU-dependent Ca(2+) uptake. MCUR1 knockdown does not alter MCU localization, but abrogates Ca(2+) uptake by energized mitochondria in intact and permeabilized cells. Ablation of MCUR1 disrupts oxidative phosphorylation, lowers cellular ATP and activates AMP kinase-dependent pro-survival autophagy. Thus, MCUR1 is a critical component of a mitochondrial uniporter channel complex required for mitochondrial Ca(2+) uptake and maintenance of normal cellular bioenergetics.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Células COS , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética
3.
Mol Cell Biol ; 31(18): 3745-58, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21746883

RESUMEN

Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis factor alpha (TNF-α)-induced necroptosis requires the adaptor proteins FADD and NEMO. FADD was found to mediate formation of the TNF-α-induced pronecrotic RIP1-RIP3 kinase complex, whereas the IκB Kinase (IKK) subunit NEMO appears to function downstream of RIP1-RIP3. Interestingly, loss of RelA potentiated TNF-α-dependent necroptosis, indicating that NEMO regulates necroptosis independently of NF-κB. Using both pharmacologic and genetic approaches, we demonstrate that the overexpression of antioxidants alleviates ROS elevation and necroptosis. Finally, elimination of BAX and BAK or overexpression of Bcl-x(L) protects cells from necroptosis at a later step. These findings provide evidence that mitochondria play an amplifying role in inflammation-induced necroptosis.


Asunto(s)
Apoptosis/fisiología , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Necrosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Western Blotting , Citometría de Flujo , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Inactivación de Genes , Inmunoprecipitación , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína X Asociada a bcl-2/deficiencia
4.
Mol Cell Biol ; 31(14): 2934-46, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576359

RESUMEN

Interferons (IFNs) are cytokines with well-described immunomodulatory and antiviral properties, but less is known about the mechanisms by which they promote cell survival or cell death. Here, we show that IFN-γ induces RIP1 kinase-dependent necroptosis in mammalian cells deficient in NF-κB signaling. Induction of necroptosis by IFN-γ was found to depend on Jak1 and partially on STAT1. We also demonstrate that IFN-γ activates IκB kinase ß (IKKß)-dependent NF-κB to regulate a transcriptional program that protects cells from necroptosis. IFN-γ induced progressive accumulation of reactive oxygen species (ROS) and eventual loss of mitochondrial membrane potential in cells lacking the NF-κB subunit RelA. Whole-genome microarray analyses identified sod2, encoding the antioxidant enzyme manganese superoxide dismutase (MnSOD), as a RelA target and potential antinecroptotic gene. Overexpression of MnSOD inhibited IFN-γ-mediated ROS accumulation and partially rescued RelA-deficient cells from necroptosis, while RNA interference (RNAi)-mediated silencing of sod2 expression increased susceptibility to IFN-γ-induced cell death. Together, these studies demonstrate that NF-κB protects cells from IFN-γ-mediated necroptosis by transcriptionally activating a survival response that quenches ROS to preserve mitochondrial integrity.


Asunto(s)
Muerte Celular/efectos de los fármacos , Interferón gamma/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Muerte Celular/fisiología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Janus Quinasa 1/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/fisiología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/genética , Transcripción Genética , Factor de Necrosis Tumoral alfa/farmacología
5.
J Cell Biol ; 190(3): 391-405, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20679432

RESUMEN

Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release-activated calcium (CRAC)-mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)- and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel.


Asunto(s)
Glutatión/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Animales , Células COS , Células Cultivadas , Pollos , Chlorocebus aethiops , Humanos , Proteínas de la Membrana/deficiencia
6.
Free Radic Biol Med ; 48(2): 306-17, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19897030

RESUMEN

Nitric oxide (NO) and other reactive nitrogen species target multiple sites in the mitochondria to influence cellular bioenergetics and survival. Kinetic imaging studies revealed that NO from either activated macrophages or donor compounds rapidly diffuses to the mitochondria, causing a dose-dependent progressive increase in NO-dependent DAF fluorescence, which corresponded to mitochondrial membrane potential loss and initiated alterations in cellular bioenergetics that ultimately led to necrotic cell death. Cellular dysfunction is mediated by an elevated 3-nitrotyrosine signature of the mitochondrial complex I subunit NDUFB8, which is vital for normal mitochondrial function as evidenced by selective knockdown via siRNA. Overexpression of mitochondrial superoxide dismutase substantially decreased NDUFB8 nitration and restored mitochondrial homeostasis. Further, treatment of cells with either necrostatin-1 or siRNA knockdown of RIP1 and RIP3 prevented NO-mediated necrosis. This work demonstrates that the interaction between NO and mitochondrially derived superoxide alters mitochondrial bioenergetics and cell function, thus providing a molecular mechanism for reactive oxygen and nitrogen species-mediated alterations in mitochondrial homeostasis.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Endotelio Vascular/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Animales , Línea Celular , Complejo I de Transporte de Electrón/genética , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Imidazoles/farmacología , Indoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Potencial de la Membrana Mitocondrial , Ratones , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Necrosis/genética , Óxido Nítrico/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
Mol Cell Biol ; 29(11): 3099-112, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19332555

RESUMEN

Ethanol intoxication stimulates the production of proinflammatory cytokines, increases the formation of reactive oxygen species, and induces mitochondrial impairment. However, information is limited as to the exact sequence and components involved in ethanol-induced hepatotoxicity. Acute ethanol exposure enhances mitochondrial superoxide (O(2)(*-)) production and impairs mitochondrial Ca(2+) handling. In turn, O(2)(*-) facilitates cytochrome c release and mitochondrial membrane potential loss that is not dependent upon H(2)O(2) and divalent cations and requires Bak in a Bax-independent fashion. Furthermore, triggering of Bak's proapoptotic activity requires the cytosolic presence of Bid, a BH3-only protein that is processed by the initiator caspase-2. Together, these studies identify an O(2)(*-)-driven, caspase-initiated apoptotic pathway that selectively involves the Bcl-2 family proteins Bid and Bak. This pathway manifests itself during chronic ethanol consumption in aged animals and identifies caspase-2, Bid, and Bak as essential mediators of O(2)(*-)-induced apoptosis that may prove effective targets for the development of therapeutics to treat alcoholic liver disease.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Superóxidos/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Calcio/metabolismo , Caspasa 2/metabolismo , Caspasa 8/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Etanol/administración & dosificación , Etanol/farmacología , Conducta Alimentaria/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...