Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 12(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35200356

RESUMEN

In signaling proteins, intrinsically disordered regions often represent regulatory elements, which are sensitive to environmental effects, ligand binding, and post-translational modifications. The conformational space sampled by disordered regions can be affected by environmental stimuli and these changes trigger, vis a vis effector domain, downstream processes. The disordered nature of these regulatory elements enables signal integration and graded responses but prevents the application of classical approaches for drug screening based on the existence of a fixed three-dimensional structure. We have designed a genetically encodable biosensor for the N-terminal regulatory element of the c-Src kinase, the first discovered protooncogene and lead representative of the Src family of kinases. The biosensor is formed by two fluorescent proteins forming a FRET pair fused at the two extremes of a construct including the SH4, unique and SH3 domains of Src. An internal control is provided by an engineered proteolytic site allowing the generation of an identical mixture of the disconnected fluorophores. We show FRET variations induced by ligand binding. The biosensor has been used for a high-throughput screening of a library of 1669 compounds with seven hits confirmed by NMR.


Asunto(s)
Técnicas Biosensibles , Familia-src Quinasas , Secuencia de Aminoácidos , Transferencia Resonante de Energía de Fluorescencia , Unión Proteica , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo
2.
Nucleic Acids Res ; 47(12): 6519-6537, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31114891

RESUMEN

Human mitochondrial DNA (h-mtDNA) codes for 13 subunits of the oxidative phosphorylation pathway, the essential route that produces ATP. H-mtDNA transcription and replication depends on the transcription factor TFAM, which also maintains and compacts this genome. It is well-established that TFAM activates the mtDNA promoters LSP and HSP1 at the mtDNA control region where DNA regulatory elements cluster. Previous studies identified still uncharacterized, additional binding sites at the control region downstream from and slightly similar to LSP, namely sequences X and Y (Site-X and Site-Y) (Fisher et al., Cell 50, pp 247-258, 1987). Here, we explore TFAM binding at these two sites and compare them to LSP by multiple experimental and in silico methods. Our results show that TFAM binding is strongly modulated by the sequence-dependent properties of Site-X, Site-Y and LSP. The high binding versatility of Site-Y or the considerable stiffness of Site-X tune TFAM interactions. In addition, we show that increase in TFAM/DNA complex concentration induces multimerization, which at a very high concentration triggers disruption of preformed complexes. Therefore, our results suggest that mtDNA sequences induce non-uniform TFAM binding and, consequently, direct an uneven distribution of TFAM aggregation sites during the essential process of mtDNA compaction.


Asunto(s)
ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Bases , Humanos , Poli A , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Termodinámica
3.
Front Mol Biosci ; 5: 39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29761107

RESUMEN

Structural disorder is an essential ingredient for function in many proteins and protein complexes. Fuzzy complexes describe the many instances where disorder is maintained as a critical element of protein interactions. In this minireview we discuss how intramolecular fuzzy interactions function in signaling complexes. Focussing on the Src family of kinases, we argue that the intrinsically disordered domains that are unique for each of the family members and display a clear fingerprint of long range interactions in Src, might have critical roles as functional sensor or effectors and mediate allosteric communication via fuzzy interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...