Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745606

RESUMEN

Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.

2.
Semin Cell Dev Biol ; 156: 219-227, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37537116

RESUMEN

The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.


Asunto(s)
Axones , Neuronas , Neuronas/fisiología , Axones/fisiología , Nervio Vago , Regeneración Nerviosa
5.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568921

RESUMEN

During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.


Asunto(s)
Células Precursoras de Oligodendrocitos , Animales , Diferenciación Celular , Oligodendroglía , Transducción de Señal , Médula Espinal , Pez Cebra
6.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34427308

RESUMEN

Regeneration after peripheral nerve damage requires that axons re-grow to the correct target tissues in a process called target-specific regeneration. Although much is known about the mechanisms that promote axon re-growth, re-growing axons often fail to reach the correct targets, resulting in impaired nerve function. We know very little about how axons achieve target-specific regeneration, particularly in branched nerves that require distinct targeting decisions at branch points. The zebrafish vagus motor nerve is a branched nerve with a well-defined topographic organization. Here, we track regeneration of individual vagus axons after whole-nerve laser severing and find a robust capacity for target-specific, functional re-growth. We then develop a new single-cell chimera injury model for precise manipulation of axon-environment interactions and find that (1) the guidance mechanism used during regeneration is distinct from the nerve's developmental guidance mechanism, (2) target selection is specified by neurons' intrinsic memory of their position within the brain, and (3) targeting to a branch requires its pre-existing innervation. This work establishes the zebrafish vagus nerve as a tractable regeneration model and reveals the mechanistic basis of target-specific regeneration.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Nervio Vago/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología
7.
Dev Cell ; 53(3): 344-357.e5, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302545

RESUMEN

Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Tretinoina/farmacología , Nervio Vago/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Región Branquial/efectos de los fármacos , Región Branquial/fisiología , Factor de Crecimiento de Hepatocito/genética , Queratolíticos/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal , Análisis Espacio-Temporal , Nervio Vago/efectos de los fármacos , Proteínas de Pez Cebra/genética
8.
Development ; 147(7)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32156755

RESUMEN

How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.


Asunto(s)
Actinas/metabolismo , Membrana Basal/fisiología , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Distroglicanos/metabolismo , Distrofina/metabolismo , Morfogénesis/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Basal/citología , Membrana Basal/ultraestructura , Polaridad Celular/genética , Drosophila/embriología , Drosophila/genética , Distroglicanos/genética , Distrofina/genética , Femenino , Morfogénesis/genética , Complejos Multiproteicos/metabolismo , Unión Proteica
9.
Curr Biol ; 27(24): 3812-3825.e3, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29225029

RESUMEN

Many networks throughout the nervous system are organized into topographic maps, where the positions of neuron cell bodies in the projecting field correspond with the positions of their axons in the target field. Previous studies of topographic map development show evidence for spatial patterning mechanisms, in which molecular determinants expressed across the projecting and target fields are matched directly in a point-to-point mapping process. Here, we describe a novel temporal mechanism of topographic map formation that depends on spatially regulated differences in the timing of axon outgrowth and functions in parallel with spatial point-to-point mapping mechanisms. We focus on the vagus motor neurons, which are topographically arranged in both mammals and fish. We show that cell position along the anterior-posterior axis of hindbrain rhombomere 8 determines expression of hox5 genes, which are expressed in posterior, but not anterior, vagus motor neurons. Using live imaging and transplantation in zebrafish embryos, we additionally reveal that axon initiation is delayed in posterior vagus motor neurons independent of neuron birth time. We show that hox5 expression directs topographic mapping without affecting time of axon outgrowth and that time of axon outgrowth directs topographic mapping without affecting hox5 expression. The vagus motor neuron topographic map is therefore determined by two mechanisms that act in parallel: a hox5-dependent spatial mechanism akin to classic mechanisms of topographic map formation and a novel axon outgrowth-dependent temporal mechanism in which time of axon formation is spatially regulated to direct axon targeting.


Asunto(s)
Genes Homeobox/genética , Neuronas Motoras/fisiología , Rombencéfalo/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Axones/fisiología , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/genética
10.
Dev Cell ; 38(1): 47-60, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404358

RESUMEN

Basement membranes (BMs) are planar protein networks that support epithelial function. Regulated changes to BM architecture can also contribute to tissue morphogenesis, but how epithelia dynamically remodel their BMs is unknown. In Drosophila, elongation of the initially spherical egg chamber correlates with the generation of a polarized network of fibrils in its surrounding BM. Here, we use live imaging and genetic manipulations to determine how these fibrils form. BM fibrils are assembled from newly synthesized proteins in the pericellular spaces between the egg chamber's epithelial cells and undergo oriented insertion into the BM by directed epithelial migration. We find that a Rab10-based secretion pathway promotes pericellular BM protein accumulation and fibril formation. Finally, by manipulating this pathway, we show that BM fibrillar structure influences egg chamber morphogenesis. This work highlights how regulated protein secretion can synergize with tissue movement to build a polarized BM architecture that controls tissue shape.


Asunto(s)
Membrana Basal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Unión al GTP Monoméricas/metabolismo , Morfogénesis/fisiología , Organogénesis/fisiología , Animales , Membrana Basal/ultraestructura , Polaridad Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Matriz Extracelular/metabolismo , Femenino , Masculino , Proteínas de Unión al GTP Monoméricas/genética
11.
Curr Top Membr ; 76: 305-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26610918

RESUMEN

Basement membranes (BMs) are sheetlike extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First, we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways.


Asunto(s)
Membrana Basal/metabolismo , Drosophila/citología , Drosophila/crecimiento & desarrollo , Animales , Humanos , Morfogénesis , Transducción de Señal
12.
Dev Biol ; 406(2): 212-21, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26348027

RESUMEN

Basement membranes (BMs) are sheet-like extracellular matrices that provide essential support to epithelial tissues. Recent evidence suggests that regulated changes in BM architecture can direct tissue morphogenesis, but the mechanisms by which cells remodel BMs are largely unknown. The Drosophila egg chamber is an organ-like structure that transforms from a spherical to an ellipsoidal shape as it matures. This elongation coincides with a stage-specific increase in Type IV Collagen (Col IV) levels in the BM surrounding the egg chamber; however, the mechanisms and morphogenetic relevance of this remodeling event have not been established. Here, we identify the Collagen-binding protein SPARC as a negative regulator of egg chamber elongation, and show that SPARC down-regulation is necessary for the increase in Col IV levels to occur. We find that SPARC interacts with Col IV prior to secretion and propose that, through this interaction, SPARC blocks the incorporation of newly synthesized Col IV into the BM. We additionally observe a decrease in Perlecan levels during elongation, and show that Perlecan is a negative regulator of this process. These data provide mechanistic insight into SPARC's conserved role in matrix dynamics and demonstrate that regulated changes in BM composition influence organ morphogenesis.


Asunto(s)
Membrana Basal/metabolismo , Colágeno/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Osteonectina/metabolismo , Folículo Ovárico/citología , Animales , Western Blotting , Movimiento Celular , Femenino , Fluorescencia , Regulación del Desarrollo de la Expresión Génica/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunoprecipitación , Hibridación in Situ , Microscopía Confocal
13.
Dev Cell ; 24(2): 159-68, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23369713

RESUMEN

Basement membranes (BMs) are specialized extracellular matrices that are essential for epithelial structure and morphogenesis. However, little is known about how BM proteins are delivered to the basal cell surface or how this process is regulated during development. Here, we identify a mechanism for polarized BM secretion in the Drosophila follicle cells. BM proteins are synthesized in a basal endoplasmic reticulum (ER) compartment from localized mRNAs and are then exported through Tango1-positive ER exit sites to basal Golgi clusters. Next, Crag targets Rab10 to structures in the basal cytoplasm, where it restricts protein delivery to the basal surface. These events occur during egg chamber elongation, a morphogenetic process that depends on follicle cell planar polarity and BM remodeling. Significantly, Tango1 and Rab10 are also planar polarized at the basal epithelial surface. We propose that the spatial control of BM production along two tissue axes promotes exocytic efficiency, BM remodeling, and organ morphogenesis.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Membrana Basal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas de Unión al GTP Monoméricas/metabolismo , Organogénesis , Animales , Polaridad Celular , Colágeno Tipo IV/metabolismo , Drosophila/citología , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Morfogénesis , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo
14.
Nat Med ; 17(9): 1116-20, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822287

RESUMEN

PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing human PIK3CA(H1047R). Notably, most PIK3CA(H1047R)-driven mammary tumors recurred after PIK3CA(H1047R) inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including focal amplification of Met or Myc (also known as c-Met and c-Myc, respectively). Whereas Met amplification led to tumor survival dependent on activation of endogenous PI3K, tumors with Myc amplification became independent of the PI3K pathway. Functional analyses showed that Myc contributed to oncogene independence and resistance to PI3K inhibition. Notably, PIK3CA mutations and c-MYC elevation co-occur in a substantial fraction of human breast tumors. Together, these data suggest that c-MYC elevation represents a potential mechanism by which tumors develop resistance to current PI3K-targeted therapies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Mamarias Experimentales/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/fisiología , Animales , Western Blotting , Fosfatidilinositol 3-Quinasa Clase I , Resistencia a Antineoplásicos/genética , Humanos , Inmunohistoquímica , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Ratones Transgénicos , Mutación Missense/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...