Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2361, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565868

RESUMEN

An ultrapure deep-blue multi-resonance-induced thermally activated delayed fluorescence material (DOB2-DABNA-A) is designed and synthesized. Benefiting from a fully resonating extended helical π-conjugated system, this compound has a small ΔEST value of 3.6 meV and sufficient spin-orbit coupling to exhibit a high-rate constant for reverse intersystem crossing (kRISC = 1.1 × 106 s-1). Furthermore, an organic light-emitting diode employing DOB2-DABNA-A as an emitter is fabricated; it exhibits ultrapure deep-blue emission at 452 nm with a small full width at half maximum of 24 nm, corresponding to Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.049). The high kRISC value reduces the efficiency roll-off, resulting in a high external quantum efficiency (EQE) of 21.6% at 1000 cd m-2.

2.
Angew Chem Int Ed Engl ; 57(37): 11982-11986, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30039632

RESUMEN

Functional organic materials that display reversible changes in fluorescence in response to external stimuli are of immense interest owing to their potential applications in sensors, probes, and security links. While earlier studies mainly focused on changes in photoluminescence (PL) color in response to external stimuli, stimuli-responsive electroluminescence (EL) has not yet been explored for color-tunable emitters in organic light-emitting diodes (OLEDs). Here a stimuli-responsive fluorophoric molecular system is reported that is capable of switching its emission color between green and orange in the solid state upon grinding, heating, and exposure to chemical vapor. A mechanistic study combining X-ray diffraction analysis and quantum chemical calculations reveals that the tunable green/orange emissions originate from the fluorophore's alternating excited-state conformers formed in the crystalline and amorphous phases. By taking advantage of this stimuli-responsive fluorescence behavior, two-color emissive OLEDs were produced using the same fluorophore in different solid phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...