Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891277

RESUMEN

The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.

2.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38498577

RESUMEN

Salinity is one of the most common abiotic stress factors affecting different biochemical and physiological processes in plants, inhibiting plant growth, and greatly reducing productivity. During the last decade, silicon (Si) supplementation was intensively studied and now is proposed as one of the most convincing methods to improve plant tolerance to salt stress. In this review, we discuss recent papers investigating the role of Si in modulating molecular, biochemical, and physiological processes that are negatively affected by high salinity. Although multiple reports have demonstrated the beneficial effects of Si application in mitigating salt stress, the exact molecular mechanism underlying these effects is not yet well understood. In this review, we focus on the localisation of Si transporters and the mechanism of Si uptake, accumulation, and deposition to understand the role of Si in various relevant physiological processes. Further, we discuss the role of Si supplementation in antioxidant response, maintenance of photosynthesis efficiency, and production of osmoprotectants. Additionally, we highlight crosstalk of Si with other ions, lignin, and phytohormones. Finally, we suggest some directions for future work, which could improve our understanding of the role of Si in plants under salt stress.

3.
Plants (Basel) ; 12(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687416

RESUMEN

Aluminium toxicity and phosphorus deficiency in soils are the main interconnected problems of modern agriculture. The aluminium-activated malate transporters (ALMTs) comprise a membrane protein family that demonstrates various physiological functions in plants, such as tolerance to environmental Al3+ and the regulation of stomatal movement. Over the past few decades, the regulation of ALMT family proteins has been intensively studied. In this review, we summarise the current knowledge about this transporter family and assess their involvement in diverse physiological processes and comprehensive regulatory mechanisms. Furthermore, we have conducted a thorough bioinformatic analysis to decipher the functional importance of conserved residues, structural components, and domains. Our phylogenetic analysis has also provided new insights into the molecular evolution of ALMT family proteins, expanding their scope beyond the plant kingdom. Lastly, we have formulated several outstanding questions and research directions to further enhance our understanding of the fundamental role of ALMT proteins and to assess their physiological functions.

4.
Plants (Basel) ; 12(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37447119

RESUMEN

Drought and salinity affect various biochemical and physiological processes in plants, inhibit plant growth, and significantly reduce productivity. The anthocyanin biosynthesis system represents one of the plant stress-tolerance mechanisms, activated by surplus reactive oxygen species. Anthocyanins act as ROS scavengers, protecting plants from oxidative damage and enhancing their sustainability. In this review, we focus on molecular and biochemical mechanisms underlying the role of anthocyanins in acquired tolerance to drought and salt stresses. Also, we discuss the role of abscisic acid and the abscisic-acid-miRNA156 regulatory node in the regulation of drought-induced anthocyanin production. Additionally, we summarise the available knowledge on transcription factors involved in anthocyanin biosynthesis and development of salt and drought tolerance. Finally, we discuss recent progress in the application of modern gene manipulation technologies in the development of anthocyanin-enriched plants with enhanced tolerance to drought and salt stresses.

5.
Front Plant Sci ; 14: 1118313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968390

RESUMEN

Plant cell wall biosynthesis is a complex and tightly regulated process. The composition and the structure of the cell wall should have a certain level of plasticity to ensure dynamic changes upon encountering environmental stresses or to fulfil the demand of the rapidly growing cells. The status of the cell wall is constantly monitored to facilitate optimal growth through the activation of appropriate stress response mechanisms. Salt stress can severely damage plant cell walls and disrupt the normal growth and development of plants, greatly reducing productivity and yield. Plants respond to salt stress and cope with the resulting damage by altering the synthesis and deposition of the main cell wall components to prevent water loss and decrease the transport of surplus ions into the plant. Such cell wall modifications affect biosynthesis and deposition of the main cell wall components: cellulose, pectins, hemicelluloses, lignin, and suberin. In this review, we highlight the roles of cell wall components in salt stress tolerance and the regulatory mechanisms underlying their maintenance under salt stress conditions.

6.
Funct Plant Biol ; 50(1): 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220140

RESUMEN

Plant vacuoles are the main cellular reservoirs to store K+ . The vacuolar K+ channels play a pivotal role in K+ exchange between cytosol and vacuolar sap. Among vacuolar K+ transporters, the Two Pore Potassium Channels (TPKs) are highly selective K+ channels present in most or all plant vacuoles and could be involved in various plant stress responses and developmental processes. Although the majority of TPK members have a vacuolar specialisation, some TPKs display different membrane localisation including the plasma membrane, tonoplast of protein storage vacuoles and probably chloroplast membranes. The functional properties as well as physiological roles of TPKs remains largely unexplored. In this review, we have collected recent data about the physiology, structure, functionality and evolution of TPK/KCO3 channels. We also critically evaluate the latest findings on the biological role, physiological functions, and regulation of TPK/KCO3 channels in relation to their structure and phylogenetic position. The possible role of TPK/KCO3 channels in plant tolerance to various abiotic stresses is summarised, and the future priority directions for TPK/KCO3 studies are addressed.


Asunto(s)
Plantas , Canales de Potasio , Filogenia , Plantas/metabolismo , Canales de Potasio/genética , Canales de Potasio/química , Canales de Potasio/metabolismo , Vacuolas/metabolismo , Membrana Celular/metabolismo
7.
Plants (Basel) ; 11(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501264

RESUMEN

Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.

8.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897663

RESUMEN

Membrane transport proteins are widely present in all living organisms, however, their function, transported substrate, and mechanism of action are unknown. Here we use diverse bioinformatics tools to investigate the evolution of MTPs, analyse domain organisation and loop topology, and study the comparative alignment of modelled 3D structures. Our results suggest a high level of conservancy between MTPs from different taxa on both amino acids and structural levels, which imply some degree of functional similarities. The presence of loop/s of different lengths in various positions suggests tax-on-specific adaptation to transported substrates, intracellular localisation, accessibility for post-translation modifications, and interaction with other proteins. The comparison of modelled structures proposes close relations and a common origin for MTP and Na/H exchanger. Further, a high level of amino acid similarity and identity between archaeal and bacterial MTPs and Na/H exchangers imply conservancy of ion transporting function at least for archaeal and bacterial MTPs.


Asunto(s)
Proteínas de Transporte de Membrana , Intercambiadores de Sodio-Hidrógeno , Secuencia de Aminoácidos , Transporte Biológico , Transporte Iónico , Proteínas de Transporte de Membrana/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
9.
J Mol Evol ; 89(9-10): 665-677, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757471

RESUMEN

Plant hormone cytokinins are important regulators of plant development, response to environmental stresses and interplay with other plant hormones. Cytokinin dehydrogenases (CKXs) are proteins responsible for the irreversible break-down of cytokinins to the adenine and aldehyde. Even though plant CKXs have been extensively studied, homologous proteins from other taxa remain mainly uncharacterised. Here we present our study on the molecular evolution and divergence of the CKX from bacteria, fungi, amoeba and viridiplantae. Although CKXs are present in eukaryotes and prokaryotes, they are missing in algae and metazoan taxa. The prevalent domain architecture consists of the FAD-binding and cytokinin binding domains, whereas some bacteria appear to have only cytokinin binding domain proteins. The CKXs play important role in the various aspects of plant life including control of plant development, response to biotic and abiotic stress, influence nutrition. Results of our study suggested that CKX originates from the FAD-linked C-terminal oxidase and has a defence-oriented function. The obtained results significantly extend the current understanding of the cytokinin dehydrogenases structure-function from the relationship to homologues from other taxa and provide a starting point baseline for their future functional characterization.


Asunto(s)
Citocininas , Evolución Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Animales , Dominios Proteicos , Estrés Fisiológico
10.
Plants (Basel) ; 10(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834689

RESUMEN

Potassium (K) is a crucial element of plant nutrition, involved in many physiological and molecular processes. K+ membrane transporters are playing a pivotal role in K+ transport and tissue distribution as well as in various plant stress responses and developmental processes. Two-pore K+-channels (TPKs) are essential to maintain plant K+ homeostasis and are mainly involved in potassium transport from the vacuoles to the cytosol. Besides vacuolar specialization, some TPK members display different membrane localization including plasma membrane, protein storage vacuole membrane, and probably the organelles. In this manuscript, we elucidate the evolution of the voltage-independent TPK (two-pore K+-channels) family, which could be represented in some species by one pore, K+-inward rectifier (Kir)-like channels. A comprehensive investigation of existing databases and application of modern bioinformatic tools allowed us to make a detailed phylogenetic inventory of TPK/KCO3 (KCO: potassium channel, outward rectifying) channels through many taxa and gain insight into the evolutionary origin of TPK family proteins. Our results reveal the fundamental evolutional difference between the first and second pores, traced throughout multiple taxa variations in the ion selection filter motif, presence of thansposon, and methylation site in the proximity of some KCO members and suggest virus-mediated horizontal transfer of a KCO3-like ancestor by viruses. Additionally, we suggest several interconnected hypotheses to explain the obtained results and provide a theoretical background for future experimental validation.

11.
Plants (Basel) ; 10(2)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498844

RESUMEN

Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na+ removal: cation/H+ antiporters and Na+-P-type ATPases. Key transport proteins, Na+/K+-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na+ concentrations below toxic levels. Na+/K+-P-ATPases are considered to be absent in flowering plants. The data presented here are a complete inventory of P-type Na+/K+-P-ATPases in the major branches of the plant kingdom. We also attempt to elucidate the evolution of these important membrane pumps in plants in comparison with other organisms. We were able to observe the gradual replacement of the Na+-binding site to the Ca2+-binding site, starting with cyanobacteria and moving to modern land plants. Our results show that the α-subunit likely evolved from one common ancestor to bacteria, fungi, plants, and mammals, whereas the ß-subunit did not evolve in green algae. In conclusion, our results strongly suggest the significant differences in the domain architecture and subunit composition of plant Na+/K+-P-ATPases depending on plant taxa and the salinity of the environment. The obtained data clarified and broadened the current views on the evolution of Na+/K+-P-ATPases. The results of this work would be helpful for further research on P-type ATPase functionality and physiological roles.

12.
Front Plant Sci ; 11: 573564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123183

RESUMEN

The processes of plant nutrition, stress tolerance, plant growth, and development are strongly dependent on transport of mineral nutrients across cellular membranes. Plant membrane transporters are key components of these processes. Among various membrane transport proteins, the monovalent cation proton antiporter (CPA) superfamily mediates a broad range of physiological and developmental processes such as ion and pH homeostasis, development of reproductive organs, chloroplast operation, and plant adaptation to drought and salt stresses. CPA family includes plasma membrane-bound Na+/H+ exchanger (NhaP) and intracellular Na+/H+ exchanger NHE (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins. In this review, we have completed the phylogenetic inventory of CPA transporters and undertaken a comprehensive evolutionary analysis of their development. Compared with previous studies, we have significantly extended the range of plant species, including green and red algae and Acrogymnospermae into phylogenetic analysis. Our data suggest that the multiplication and complexation of CPA isoforms during evolution is related to land colonisation by higher plants and associated with an increase of different tissue types and development of reproductive organs. The new data extended the number of clades for all groups of CPAs, including those for NhaP/SOS, NHE/NHX, KEA, and CHX. We also critically evaluate the latest findings on the biological role, physiological functions and regulation of CPA transporters in relation to their structure and phylogenetic position. In addition, the role of CPA members in plant tolerance to various abiotic stresses is summarized, and the future priority directions for CPA studies in plants are discussed.

13.
Front Plant Sci ; 10: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828339

RESUMEN

Salinity is a major threat to modern agriculture causing inhibition and impairment of crop growth and development. Here, we not only review recent advances in salinity stress research in plants but also revisit some basic perennial questions that still remain unanswered. In this review, we analyze the physiological, biochemical, and molecular aspects of Na+ and Cl- uptake, sequestration, and transport associated with salinity. We discuss the role and importance of symplastic versus apoplastic pathways for ion uptake and critically evaluate the role of different types of membrane transporters in Na+ and Cl- uptake and intercellular and intracellular ion distribution. Our incomplete knowledge regarding possible mechanisms of salinity sensing by plants is evaluated. Furthermore, a critical evaluation of the mechanisms of ion toxicity leads us to believe that, in contrast to currently held ideas, toxicity only plays a minor role in the cytosol and may be more prevalent in the vacuole. Lastly, the multiple roles of K+ in plant salinity stress are discussed.

14.
New Phytol ; 194(3): 716-723, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22380876

RESUMEN

• Arsenic contamination has a negative impact on crop cultivation and on human health. As yet, no proteins have been identified in plants that mediate the extrusion of arsenic. Here, we heterologously expressed the yeast (Saccharomyces cerevisiae) arsenite efflux transporter ACR3 into Arabidopsis to evaluate how this affects plant tolerance and tissue arsenic contents. • ACR3 was cloned from yeast and transformed into wild-type and nip7;1 Arabidopsis. Arsenic tolerance was determined at the cellular level using vitality stains in protoplasts, in intact seedlings grown on agar plates and in mature plants grown hydroponically. Arsenic efflux was measured from protoplasts and from intact plants, and arsenic levels were measured in roots and shoots of plants exposed to arsenate. • At the cellular level, all transgenic lines showed increased tolerance to arsenite and arsenate and a greater capacity for arsenate efflux. With intact plants, three of four stably transformed lines showed improved growth, whereas only transgenic lines in the wild-type background showed increased efflux of arsenite into the external medium. The presence of ACR3 hardly affected tissue arsenic levels, but increased arsenic translocation to the shoot. • Heterologous expression of yeast ACR3 endows plants with greater arsenic resistance, but does not lower significantly arsenic tissue levels.


Asunto(s)
Arabidopsis/genética , Arsénico/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arseniatos/metabolismo , Arsénico/análisis , Arsenitos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Hidroponía , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Protoplastos , Proteínas Recombinantes de Fusión , Proteínas de Saccharomyces cerevisiae/metabolismo , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Transformación Genética , Transgenes
15.
Cell Mol Life Sci ; 66(14): 2329-39, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19350206

RESUMEN

Arsenic is a metalloid which is toxic to living organisms. Natural occurrence of arsenic and human activities have led to widespread contamination in many areas of the world, exposing a large section of the human population to potential arsenic poisoning. Arsenic intake can occur through consumption of contaminated crops and it is therefore important to understand the mechanisms of transport, metabolism and tolerance that plants display in response to arsenic. Plants are mainly exposed to the inorganic forms of arsenic, arsenate and arsenite. Recently, significant progress has been made in the identification and characterisation of proteins responsible for movement of arsenite into and within plants. Aquaporins of the NIP (nodulin26-like intrinsic protein) subfamily were shown to transport arsenite in planta and in heterologous systems. In this review, we will evaluate the implications of these new findings and assess how this may help in developing safer and more tolerant crops.


Asunto(s)
Arsenitos/metabolismo , Plantas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Arseniatos/metabolismo , Arsénico/metabolismo , Transporte Iónico/genética , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
16.
FEBS Lett ; 582(11): 1625-8, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18435919

RESUMEN

We studied the effect of loss of function in the NIP subfamily II in Arabidopsis thaliana to assess their potential role(s) in arsenite (AsIII) uptake. Loss of function in AtNIP7;1 led to increased plant tolerance to AsIII and reduced total As in planta. AtNIP7;1 expression in various yeast backgrounds increased AsIII sensitivity. In the acr3Delta yeast genotype, AtNIP7;1 caused a moderate increase in AsV tolerance. Short-term As uptake in fsp1Delta expressing AtNIP7;1 was significantly larger than that in the empty vector control. The data suggest that AtNIP7;1 can mediate AsIII transport and contributes to AsIII uptake in plants.


Asunto(s)
Acuaporinas/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Arsenitos/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsenitos/toxicidad , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...