Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(14): 2218-2231.e4, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37207651

RESUMEN

Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.


Asunto(s)
Ganglios Basales , Castigo , Cuerpo Estriado , Globo Pálido/fisiología , Movimiento/fisiología
2.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618556

RESUMEN

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Dopamina/deficiencia , Globo Pálido/fisiopatología , Neuronas/fisiología , Enfermedad de Parkinson/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Animales , Modelos Animales de Enfermedad , Dopamina/genética , Femenino , Globo Pálido/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiopatología , Sinapsis/fisiología
3.
Curr Biol ; 30(16): 3065-3074.e5, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32531284

RESUMEN

In rodent whisker sensation, whisker position signals, including whisking phase, are integrated with touch signals to enable spatially accurate tactile perception, but other functions of phase coding are unclear. We investigate how phase coding affects the neural coding of surface features during surface whisking. In mice performing rough-smooth discrimination, S1 units exhibit much stronger phase tuning during surface whisking than in prior studies of whisking in air. Among putative pyramidal cells, preferred phase tiles phase space, but protraction phases are strongly over-represented. Fast-spiking units are nearly all protraction tuned. This protraction bias increases the coding of stick-slip whisker events during protraction, suggesting that surface features are preferentially encoded during protraction. Correspondingly, protraction-tuned units encode rough-smooth texture better than retraction-tuned units and encode the precise spatial location of surface ridges with higher acuity. This suggests that protraction is the main information-gathering phase for high-resolution surface features, with phase coding organized to support this function.


Asunto(s)
Conducta Exploratoria/fisiología , Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Tacto/fisiología , Vibrisas/fisiología , Animales , Roedores
4.
Elife ; 82019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30839276

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder whose cardinal motor symptoms are attributed to dysfunction of basal ganglia circuits under conditions of low dopamine. Despite well-established physiological criteria to define basal ganglia dysfunction, correlations between individual parameters and motor symptoms are often weak, challenging their predictive validity and causal contributions to behavior. One limitation is that basal ganglia pathophysiology is studied only at end-stages of depletion, leaving an impoverished understanding of when deficits emerge and how they evolve over the course of depletion. In this study, we use toxin- and neurodegeneration-induced mouse models of dopamine depletion to establish the physiological trajectory by which the substantia nigra reticulata (SNr) transitions from the healthy to the diseased state. We find that physiological progression in the SNr proceeds in discrete state transitions that are highly stereotyped across models and correlate well with the prodromal and symptomatic stages of behavior.


Asunto(s)
Dopamina/deficiencia , Dopamina/metabolismo , Trastornos Motores/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Porción Reticular de la Sustancia Negra/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Neuron ; 97(2): 418-433.e5, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29307709

RESUMEN

Tactile objects have both local geometry (shape) and broader macroscopic texture, but how these different spatial scales are simultaneously encoded during active touch is unknown. In the whisker system, we tested for a shared code based on localized whisker micromotions (stick-slips) and slip-evoked spikes. We trained mice to discriminate smooth from rough surfaces, including ridged gratings and sandpaper. Whisker slips locked to ridges and evoked temporally precise spikes (<10 ms jitter) in somatosensory cortex (S1) that could resolve ridges with ∼1 mm accuracy. Slip-sensitive neurons also encoded touch and texture. On rough surfaces, both slip-evoked spikes and an additional non-slip signal elevated mean firing rate, allowing accurate rough-smooth texture decoding from population firing rate. Eighteen percent of neurons were selective among rough surfaces. Thus, slips elicit spatially and temporally precise spiking in S1 that simultaneously encodes local shape (ridges) and is integrated into a macroscopic firing rate code for roughness.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Potenciales de Acción , Animales , Señales (Psicología) , Discriminación en Psicología/fisiología , Ratones , Movimiento (Física) , Propiedades de Superficie , Factores de Tiempo , Tacto/fisiología , Vibrisas/inervación
6.
Neuron ; 80(1): 210-22, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24094112

RESUMEN

Local recurrent networks in neocortex are critical nodes for sensory processing, but their regulation by experience is much less understood than for long-distance (translaminar or cross-columnar) projections. We studied local L2/3 recurrent networks in rat somatosensory cortex during deprivation-induced whisker map plasticity, by expressing channelrhodopsin-2 (ChR2) in L2/3 pyramidal cells and measuring light-evoked synaptic currents in ex vivo S1 slices. In columns with intact whiskers, brief light impulses evoked recurrent excitation and supralinear inhibition. Deprived columns showed modestly reduced excitation and profoundly reduced inhibition, providing a circuit locus for disinhibition of whisker-evoked responses observed in L2/3 in vivo. Slower light ramps elicited sustained gamma frequency oscillations, which were nearly abolished in deprived columns. Reduction in gamma power was also observed in spontaneous LFP oscillations in L2/3 of deprived columns in vivo. Thus, L2/3 recurrent networks are a powerful site for homeostatic modulation of excitation-inhibition balance and regulation of gamma oscillations.


Asunto(s)
Mapeo Encefálico , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Células Piramidales/fisiología , Ratas , Ratas Long-Evans , Privación Sensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...