Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 123: 34-47, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783236

RESUMEN

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Humanos , Ácido Hialurónico/metabolismo , Diabetes Mellitus Tipo 2/genética , Himecromona/farmacología , Islotes Pancreáticos/metabolismo , Obesidad/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo
2.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37699398

RESUMEN

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Asunto(s)
Senescencia Celular , Senoterapéuticos , Senescencia Celular/genética , Muerte Celular , Compuestos de Anilina
3.
Cell Stem Cell ; 30(5): 689-705.e4, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37080206

RESUMEN

Exercise has the ability to rejuvenate stem cells and improve tissue regeneration in aging animals. However, the cellular and molecular changes elicited by exercise have not been systematically studied across a broad range of cell types in stem cell compartments. We subjected young and old mice to aerobic exercise and generated a single-cell transcriptomic atlas of muscle, neural, and hematopoietic stem cells with their niche cells and progeny, complemented by whole transcriptome analysis of single myofibers. We found that exercise ameliorated the upregulation of a number of inflammatory pathways associated with old age and restored aspects of intercellular communication mediated by immune cells within these stem cell compartments. Exercise has a profound impact on the composition and transcriptomic landscape of circulating and tissue-resident immune cells. Our study provides a comprehensive view of the coordinated responses of multiple aged stem cells and niche cells to exercise at the transcriptomic level.


Asunto(s)
Envejecimiento , Condicionamiento Físico Animal , Ratones , Animales , Envejecimiento/fisiología , Células Madre Hematopoyéticas , Transcriptoma/genética , Perfilación de la Expresión Génica , Músculo Esquelético , Nicho de Células Madre , Mamíferos
4.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909502

RESUMEN

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

5.
Nat Metab ; 2(4): 307-317, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32601609

RESUMEN

Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis. One such strategy, exercise, has long been appreciated for its benefits on healthspan, but its effects on aged stem cell function in the context of tissue regeneration are incompletely understood. Here we show that exercise in the form of voluntary wheel running accelerates muscle repair in old animals and improves old MuSC function. Through transcriptional profiling and genetic studies, we discovered that the restoration of old MuSC activation ability hinges on restoration of Cyclin D1, whose expression declines with age in MuSCs. Pharmacologic studies revealed that Cyclin D1 maintains MuSC activation capacity by repressing TGFß signaling. Taken together, these studies demonstrate that voluntary exercise is a practicable intervention for old MuSC rejuvenation. Furthermore, this work highlights the distinct role of Cyclin D1 in stem cell quiescence.


Asunto(s)
Ciclina D1/metabolismo , Músculo Esquelético/citología , Condicionamiento Físico Animal , Células Madre/citología , Animales , Separación Celular , Trasplante de Células , Citometría de Flujo , Ratones , Músculo Esquelético/metabolismo , Células Madre/metabolismo
6.
Mol Ecol ; 27(10): 2414-2434, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29740906

RESUMEN

To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.


Asunto(s)
Agaricales/fisiología , Hormigas/clasificación , Filogenia , Simbiosis , Agaricales/clasificación , Animales , Hormigas/microbiología , Hormigas/fisiología , Conducta Animal
7.
Mol Ecol ; 26(24): 6921-6937, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29134724

RESUMEN

Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.


Asunto(s)
Agaricales/genética , Hormigas/microbiología , Coevolución Biológica , Animales , Hormigas/clasificación , América Central , Marcadores Genéticos , Genética de Población , Genotipo , Repeticiones de Microsatélite , América del Norte , Filogenia , Filogeografía , América del Sur , Simbiosis
8.
Mycologia ; 109(5): 832-846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29300677

RESUMEN

We dekaryotized the multinucleate fungus Leucocoprinus gongylophorus, a symbiotic fungus cultivated vegetatively by leafcutter ants as their food. To track genetic changes resulting from dekaryotization (elimination of some nuclei from the multinuclear population), we developed two multiplex microsatellite fingerprinting panels (15 loci total), then characterized the allele profiles of 129 accessions generated by dekaryotization treatment. Genotype profiles of the 129 accessions confirmed allele loss expected by dekaryotization of the multinucleate fungus. We found no evidence for haploid and single-nucleus strains among the 129 accessions. Microscopy of fluorescently stained dekaryotized accessions revealed great variation in nuclei number between cells of the same vegetative mycelium, with cells containing typically between 3 and 15 nuclei/cell (average = 9.4 nuclei/cell; mode = 8). We distinguish four mycelial morphotypes among the dekaryotized accessions; some of these morphotypes had lost the full competence to produce gongylidia (nutritive hyphal-tip swellings consumed by leafcutter ants as food). In mycelial growth confrontations between different gongylidia-incompetent accessions, allele profiles suggest exchange of nuclei between dekaryotized accessions, restoring full gongylidia competence in some of these strains. The restoration of gongylidia competence after genetic exchange between dekaryotized strains suggests the hypothesis that complementary nuclei interact, or nuclear and cytoplasmic factors interact, to promote or enable gongylidia competence.


Asunto(s)
Agaricales/genética , Hormigas/microbiología , Núcleo Celular/genética , Hifa/crecimiento & desarrollo , Hifa/genética , Poliploidía , Simbiosis , Agaricales/citología , Agaricales/fisiología , Animales , Genotipo , Hifa/citología , Microscopía
9.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26113689

RESUMEN

Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.


Asunto(s)
Hormigas/microbiología , Hongos/clasificación , Consorcios Microbianos , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Animales , Hongos/genética , Hongos/aislamiento & purificación , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Panamá , Pantoea/clasificación , Pantoea/genética , Pantoea/aislamiento & purificación , Filogenia , Simbiosis/genética
10.
Front Immunol ; 6: 123, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852691

RESUMEN

Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous malignancies. Recent publications have demonstrated that when HA synthesis is inhibited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal models of these diseases. Notably, 4-MU is an already approved drug in Europe and Asia called "hymecromone" where it is used to treat biliary spasm. However, there is uncertainty regarding how 4-MU treatment provides benefit in these animal models and the potential long-term consequences of HA inhibition. Here, we review what is known about how HA contributes to immune dysregulation and tumor progression. Then, we review what is known about 4-MU and hymecromone in terms of mechanism of action, pharmacokinetics, and safety. Finally, we review recent studies detailing the use of 4-MU to treat animal models of cancer and autoimmunity.

11.
Mol Ecol ; 21(7): 1754-68, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22340254

RESUMEN

As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms.


Asunto(s)
Abejas/microbiología , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Filogenia , Animales , ADN Bacteriano/genética , Ambiente , Flores/microbiología , Funciones de Verosimilitud , Metagenoma , Modelos Genéticos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Proc Natl Acad Sci U S A ; 108(30): 12366-71, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21768368

RESUMEN

Sex and recombination are central processes in life generating genetic diversity. Organisms that rely on asexual propagation risk extinction due to the loss of genetic diversity and the inability to adapt to changing environmental conditions. The fungus-growing ant species Mycocepurus smithii was thought to be obligately asexual because only parthenogenetic populations have been collected from widely separated geographic localities. Nonetheless, M. smithii is ecologically successful, with the most extensive distribution and the highest population densities of any fungus-growing ant. Here we report that M. smithii actually consists of a mosaic of asexual and sexual populations that are nonrandomly distributed geographically. The sexual populations cluster along the Rio Amazonas and the Rio Negro and appear to be the source of independently evolved and widely distributed asexual lineages, or clones. Either apomixis or automixis with central fusion and low recombination rates is inferred to be the cytogenetic mechanism underlying parthenogenesis in M. smithii. Males appear to be entirely absent from asexual populations, but their existence in sexual populations is indicated by the presence of sperm in the reproductive tracts of queens. A phylogenetic analysis of the genus suggests that M. smithii is monophyletic, rendering a hybrid origin of asexuality unlikely. Instead, a mitochondrial phylogeny of sexual and asexual populations suggests multiple independent origins of asexual reproduction, and a divergence-dating analysis indicates that M. smithii evolved 0.5-1.65 million years ago. Understanding the evolutionary origin and maintenance of asexual reproduction in this species contributes to a general understanding of the adaptive significance of sex.


Asunto(s)
Hormigas/genética , Hormigas/fisiología , Animales , Hormigas/microbiología , Secuencia de Bases , Evolución Biológica , ADN Mitocondrial/genética , Ecosistema , Femenino , Variación Genética , Genética de Población , Genoma de los Insectos , América Latina , Masculino , Partenogénesis/genética , Partenogénesis/fisiología , Filogeografía , Reproducción/genética , Reproducción/fisiología , Reproducción Asexuada/genética , Reproducción Asexuada/fisiología
13.
FEMS Microbiol Ecol ; 78(2): 244-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21671963

RESUMEN

We profiled the microfungal communities in gardens of fungus-growing ants to evaluate possible species-specific ant-microfungal associations and to assess the potential dependencies of microfungal diversity on ant foraging behavior. In a 1-year survey, we isolated microfungi from nests of Cyphomyrmex wheeleri, Trachymyrmex septentrionalis and Atta texana in Central Texas. Microfungal prevalence was higher in gardens of C. wheeleri (57%) than in the gardens of T. septentrionalis (46%) and A. texana (35%). Culture-dependent methods coupled with a polyphasic approach of species identification revealed diverse and changing microfungal communities in all the sampling periods. Diversity analyses showed no obvious correlations between the number of observed microfungal species, ant species, or the ants' changing foraging behavior across the seasons. However, both correspondence analysis and 5.8S-rRNA gene unifrac analyses suggested structuring of microfungal communities by ant host. These host-specific differences may reflect in part the three different environments where ants were collected. Most interestingly, the specialized fungal parasite Escovopsis was not isolated from any attine garden in this study near the northernmost limit of the range of attine ants, contrasting with previous studies that indicated a significant incidence of this parasite in ant gardens from Central and South America. The observed differences of microfungal communities in attine gardens suggest that the ants are continuously in contact with a diverse microfungal species assemblage.


Asunto(s)
Hormigas/fisiología , Hongos/crecimiento & desarrollo , Simbiosis , Animales , Secuencia de Bases , Ecología , Ecosistema , Hongos/clasificación , Hongos/genética , Jardinería , Datos de Secuencia Molecular , Microbiología del Suelo , América del Sur , Texas
14.
Proc Natl Acad Sci U S A ; 108(10): 4053-6, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368106

RESUMEN

The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate host-microbe symbiosis.


Asunto(s)
Hormigas/fisiología , Evolución Biológica , Frío , Hongos/fisiología , Estaciones del Año , Simbiosis , Animales , Hormigas/parasitología
15.
Microb Ecol ; 61(4): 821-31, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21243351

RESUMEN

Social insects harbor diverse assemblages of bacterial microbes, which may play a crucial role in the success or failure of biological invasions. The invasive fire ant Solenopsis invicta (Formicidae, Hymenoptera) is a model system for understanding the dynamics of invasive social insects and their biological control. However, little is known about microbes as biotic factors influencing the success or failure of ant invasions. This pilot study is the first attempt to characterize and compare microbial communities associated with the introduced S. invicta and the native Solenopsis geminata in the USA. Using 16S amplicon 454 pyrosequencing, bacterial communities of workers, brood, and soil from nest walls were compared between neighboring S. invicta and S. geminata colonies at Brackenridge Field Laboratory, Austin, Texas, with the aim of identifying potential pathogenic, commensal, or mutualistic microbial associates. Two samples of S. geminata workers showed high counts of Spiroplasma bacteria, a known pathogen or mutualist of other insects. A subsequent analysis using PCR and sequencing confirmed the presence of Spiroplasma in additional colonies of both Solenopsis species. Wolbachia was found in one alate sample of S. geminata, while one brood sample of S. invicta had a high count of Lactococcus. As expected, ant samples from both species showed much lower microbial diversity than the surrounding soil. Both ant species had similar overall bacterial diversities, although little overlap in specific microbes. To properly characterize a single bacterial community associated with a Solenopsis ant sample, rarefaction analyses indicate that it is necessary to obtain 5,000-10,000 sequences. Overall, 16S amplicon 454 pyrosequencing appears to be a cost-effective approach to screen whole microbial diversity associated with invasive ant species.


Asunto(s)
Hormigas/microbiología , Bacterias/aislamiento & purificación , Biodiversidad , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Animales , Bacterias/clasificación , Bacterias/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
16.
Sci Rep ; 1: 204, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355719

RESUMEN

Fungus-growing ants employ several defenses against diseases, including disease-suppressing microbial biofilms on their integument and in fungal gardens. Here, we compare the phenology of microbiomes in natural nests of the temperate fungus-growing ant Trachymyrmex septentrionalis using culture-dependent isolations and culture-independent 16S-amplicon 454-sequencing. 454-sequencing revealed diverse actinobacteria associated with ants, including most prominently Solirubrobacter (12.2-30.9% of sequence reads), Pseudonocardia (3.5-42.0%), and Microlunatus (0.4-10.8%). Bacterial abundances remained relatively constant in monthly surveys throughout the annual active period (late winter to late summer), except Pseudonocardia abundance declined in females during the reproductive phase. Pseudonocardia species found on ants are phylogenetically different from those in gardens and soil, indicating ecological separation of these Pseudonocardia types. Because the pathogen Escovopsis is not known to infect gardens of T. septentrionalis, the ant-associated microbes do not seem to function in Escovopsis suppression, but could protect against ant diseases, help in nest sanitation, or serve unknown functions.


Asunto(s)
Hormigas/microbiología , Hormigas/fisiología , Metagenoma , Animales , Biodiversidad , Biología Computacional , Femenino , Masculino , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN , Simbiosis/genética
17.
PLoS One ; 5(9)2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20844760

RESUMEN

BACKGROUND: Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. METHODOLOGY/PRINCIPAL FINDINGS: Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10-20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. CONCLUSIONS/SIGNIFICANCE: Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.


Asunto(s)
Agaricales/fisiología , Hormigas/microbiología , Hormigas/fisiología , Agaricales/genética , Animales , Hormigas/genética , Genotipo , Comportamiento de Nidificación , Simbiosis
18.
Proc Natl Acad Sci U S A ; 106(42): 17805-10, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19805175

RESUMEN

In many host-microbe mutualisms, hosts use beneficial metabolites supplied by microbial symbionts. Fungus-growing (attine) ants are thought to form such a mutualism with Pseudonocardia bacteria to derive antibiotics that specifically suppress the coevolving pathogen Escovopsis, which infects the ants' fungal gardens and reduces growth. Here we test 4 key assumptions of this Pseudonocardia-Escovopsis coevolution model. Culture-dependent and culture-independent (tag-encoded 454-pyrosequencing) surveys reveal that several Pseudonocardia species and occasionally Amycolatopsis (a close relative of Pseudonocardia) co-occur on workers from a single nest, contradicting the assumption of a single pseudonocardiaceous strain per nest. Pseudonocardia can occur on males, suggesting that Pseudonocardia could also be horizontally transmitted during mating. Pseudonocardia and Amycolatopsis secretions kill or strongly suppress ant-cultivated fungi, contradicting the previous finding of a growth-enhancing effect of Pseudonocardia on the cultivars. Attine ants therefore may harm their own cultivar if they apply pseudonocardiaceous secretions to actively growing gardens. Pseudonocardia and Amycolatopsis isolates also show nonspecific antifungal activities against saprotrophic, endophytic, entomopathogenic, and garden-pathogenic fungi, contrary to the original report of specific antibiosis against Escovopsis alone. We conclude that attine-associated pseudonocardiaceous bacteria do not exhibit derived antibiotic properties to specifically suppress Escovopsis. We evaluate hypotheses on nonadaptive and adaptive functions of attine integumental bacteria, and develop an alternate conceptual framework to replace the prevailing Pseudonocardia-Escovopsis coevolution model. If association with Pseudonocardia is adaptive to attine ants, alternate roles of such microbes could include the protection of ants or sanitation of the nest.


Asunto(s)
Actinobacteria/fisiología , Hormigas/microbiología , Ecosistema , Simbiosis , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Animales , Antifúngicos/metabolismo , Hormigas/fisiología , Conducta Animal , Evolución Biológica , Femenino , Hypocreales/patogenicidad , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología
19.
PLoS One ; 3(5): e2304, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509541

RESUMEN

The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.


Asunto(s)
Conservación de los Recursos Naturales , Parasitemia , Estrigiformes/parasitología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA