Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(12): 6333-6338, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33350044

RESUMEN

Trans-p-methoxy arylazopyrazole spontaneously forms non-centrosymmetric polar crystals, which reversibly undergo liquefaction upon photoisomerization to the cis-isomer. This liquid cis-isomer has a large electric dipole moment and is highly soluble in water (solubility up to ≈58 mM), which is remarkably higher than that of the trans-isomer (690 µM). Vis-light illumination of the aqueous cis-isomer generates macroscopically oriented, non-centrosymmetric crystals at the air-water interface. Polar crystals are also formed in sandwich glass cells (spacing, 20 µm) upon photo-induced crystallization of the liquid cis-isomer. The trans-crystals thus formed showed second harmonic generation (SHG) whose intensity is switched on/off in response to the photo-induced phase transition.

2.
Angew Chem Int Ed Engl ; 56(11): 2974-2978, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28199768

RESUMEN

Anionic Keggin polyoxometalates (POMs) and ether linkage-enriched ammonium ions spontaneously self-assemble into rectangular ultrathin nanosheets in aqueous media. The structural flexibility of the cation is essential to form oriented nanosheets; as demonstrated by single-crystal X-ray diffraction measurements. The difference in initial conditions exerts significant influence on selecting for self-assembly pathways in the energy landscape. Photoillumination of the POM sheets in pure water causes dissolution of reduced POMs, which allowed site-specific etching of nanosheets using laser scanning microscopy. By contrast, photoetching was suppressed in aqueous AgNO3 and site-selective deposition of silver nanoparticles occurred as a consequence of electron transfer from the photoreduced POMs to Ag+ ions on the nanosheet surface.

3.
Langmuir ; 32(41): 10597-10603, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27682007

RESUMEN

A new family of supramolecular metalloamphiphiles carrying two metal centers is developed. They are formed by bridging two coordinatively unsaturated lipophilic Tb3+ complexes (TbL+) with chiral dicarboxylate anions. The formation of bridging coordination bonds is confirmed using UV spectroscopy, induced circular dichroism (ICD), increased luminescence intensity of TbL+, and electrospray ionization mass spectrometry (ESIMS) analysis. These supramolecular metalloamphiphiles hierarchically self-assemble in ethanol to give luminescent nanospheres, as observed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The two hydroxyl groups introduced in the bridging ligands of [TbL]2(d-/l-tartrate) significantly promote self-assembly by increasing coherent forces via intermolecular hydrogen bonding. The observed self-assembly in ethanol also merits mention because such polar alcoholic media have been unfavorable for conventional molecular self-assemblies. The present approach offers a new molecular design strategy for composable metalloamphiphiles.

4.
Chemistry ; 22(40): 14213-8, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27527513

RESUMEN

A new class of ferroelectric coordination-based polymers has been developed by the self-assembly of lipophilic zinc porphyrin (ZnP) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination-based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization-electric field (P-E) loops and inversion current peaks in current-voltage (I-V) loops. The observed ferroelectric properties are explainable by flip-flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive-up-negative-down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics.

5.
Angew Chem Int Ed Engl ; 54(5): 1532-6, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25483773

RESUMEN

Ionic crystals (ICs) of the azobenzene derivatives show photoinduced IC-ionic liquid (IL) phase transition (photoliquefaction) upon UV-irradiation, and the resulting cis-azobenzene ILs are reversibly photocrystallized by illumination with visible light. The photoliquefaction of ICs is accompanied by a significant increase in ionic conductivity at ambient temperature. The photoliquefaction also brings the azobenzene ICs further significance as photon energy storage materials. The cis-IL shows thermally induced crystallization to the trans-IC phase. This transition is accompanied by exothermic peaks with a total ΔH of 97.1 kJ mol(-1) , which is almost double the conformational energy stored in cis-azobenzene chromophores. Thus, the integration of photoresponsive ILs and self-assembly pushes the limit of solar thermal batteries.

6.
Langmuir ; 30(9): 2376-84, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24528277

RESUMEN

Anionic azobenzene-containing amphiphile 1 (sodium 4-[4-(N-methyl-N-dodecylamino)phenylazo]benzenesulfonate) forms ordered bilayer membranes in binary ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, [C2mim][C2OSO3])-water mixtures. The binary [C2mim][C2OSO3]-water mixture is macroscopically homogeneous at any mixing ratio; however, it possesses fluctuating nanodomains of [C2mim][C2OSO3] molecules as observed by dynamic light scattering (DLS). These nanodomains show reversible heat-induced mixing behavior with water. Although the amphiphile 1 is substantially insoluble in pure water, it is dispersible in the [C2mim][C2OSO3]-water mixtures. The concentration of [C2mim][C2OSO3] and temperature exert significant influences on the self-assembling characteristics of 1 in the binary media, as shown by DLS, transmission electron microscopy (TEM), UV-vis spectroscopy, and zeta-potential measurements. Bilayer membranes with rod- or dotlike nanostructures were formed at a lower content of [C2mim][C2OSO3] (2-30 v/v %), in which azobenzene chromophores adopt parallel molecular orientation regardless of temperature. In contrast, when the content of [C2mim][C2OSO3] is increased above 60 v/v %, azobenzene bilayers showed thermally reversible gel-to-liquid crystalline phase transition. The self-assembly of azobenzene amphiphiles is tunable depending on the volume fraction of [C2mim][C2OSO3] and temperature, which are associated with the solvation by nanoclusters in the binary [C2mim][C2OSO3]-water media. These observations clearly indicate that mixtures of water-soluble ionic liquids and water provide unique and valiant environments for ordered molecular self-assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...