Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293241

RESUMEN

Because opioid withdrawal is an intensely aversive experience, persons with opioid use disorder (OUD) often relapse to avoid it. The lateral septum (LS) is a forebrain structure that is important in aversion processing, and previous studies have linked the lateral septum (LS) to substance use disorders. It is unclear, however, which precise LS cell types might contribute to the maladaptive state of withdrawal. To address this, we used single-nucleus RNA-sequencing to interrogate cell type specific gene expression changes induced by chronic morphine and withdrawal. We discovered that morphine globally disrupted the transcriptional profile of LS cell types, but Neurotensin-expressing neurons (Nts; LS-Nts neurons) were selectively activated by naloxone. Using two-photon calcium imaging and ex vivo electrophysiology, we next demonstrate that LS-Nts neurons receive enhanced glutamatergic drive in morphine-dependent mice and remain hyperactivated during opioid withdrawal. Finally, we showed that activating and silencing LS-Nts neurons during opioid withdrawal regulates pain coping behaviors and sociability. Together, these results suggest that LS-Nts neurons are a key neural substrate involved in opioid withdrawal and establish the LS as a crucial regulator of adaptive behaviors, specifically pertaining to OUD.

2.
Neuron ; 110(15): 2455-2469.e8, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35654036

RESUMEN

The pheromonal information received by the vomeronasal system plays a crucial role in regulating social behaviors such as aggression in mice. Despite accumulating knowledge of the brain regions involved in aggression, the specific vomeronasal receptors and the exact neural circuits responsible for pheromone-mediated aggression remain unknown. Here, we identified one murine vomeronasal receptor, Vmn2r53, that is activated by urine from males of various strains and is responsible for evoking intermale aggression. We prepared a purified pheromonal fraction and Vmn2r53 knockout mice and applied genetic tools for neuronal activity recording, manipulation, and circuit tracing to decipher the neural mechanisms underlying Vmn2r53-mediated aggression. We found that Vmn2r53-mediated aggression is regulated by specific neuronal populations in the ventral premammillary nucleus and the ventromedial hypothalamic nucleus. Together, our results shed light on the hypothalamic regulation of male aggression mediated by a single vomeronasal receptor.


Asunto(s)
Agresión , Órgano Vomeronasal , Agresión/fisiología , Animales , Hipotálamo , Masculino , Ratones , Neuronas/fisiología , Feromonas/fisiología , Núcleo Hipotalámico Ventromedial , Órgano Vomeronasal/fisiología
3.
Nat Commun ; 13(1): 556, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115521

RESUMEN

The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Biomarcadores/sangre , Hemoglobinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Órgano Vomeronasal/metabolismo , Animales , Femenino , Hemoglobinas/genética , Hibridación in Situ/métodos , Lactancia , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
4.
Nat Commun ; 10(1): 4560, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594935

RESUMEN

The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting.


Asunto(s)
Habénula/fisiología , Hambre/fisiología , Área Hipotalámica Lateral/fisiología , Núcleos Septales/fisiología , Gusto/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Apetitiva/fisiología , Neuronas GABAérgicas/metabolismo , Habénula/citología , Área Hipotalámica Lateral/citología , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Núcleos Septales/citología , Técnicas Estereotáxicas
5.
Neurosci Res ; 140: 59-76, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30389572

RESUMEN

Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.


Asunto(s)
Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Vías Olfatorias/fisiología , Conducta Sexual/fisiología , Animales , Femenino , Masculino , Ratones , Red Nerviosa/enzimología , Vías Nerviosas/enzimología
6.
Nat Commun ; 9(1): 4463, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367054

RESUMEN

Mating drive is balanced by a need to safeguard resources for offspring, yet the neural basis for negative regulation of mating remains poorly understood. In rodents, pheromones critically regulate sexual behavior. Here, we observe suppression of adult female sexual behavior in mice by exocrine gland-secreting peptide 22 (ESP22), a lacrimal protein from juvenile mice. ESP22 activates a dedicated vomeronasal receptor, V2Rp4, and V2Rp4 knockout eliminates ESP22 effects on sexual behavior. Genetic tracing of ESP22-responsive neural circuits reveals a critical limbic system connection that inhibits reproductive behavior. Furthermore, V2Rp4 counteracts a highly related vomeronasal receptor, V2Rp5, that detects the male sex pheromone ESP1. Interestingly, V2Rp4 and V2Rp5 are encoded by adjacent genes, yet couple to distinct circuits and mediate opposing effects on female sexual behavior. Collectively, our study reveals molecular and neural mechanisms underlying pheromone-mediated sexual rejection, and more generally, how inputs are routed through olfactory circuits to evoke specific behaviors.


Asunto(s)
Sistema Límbico/metabolismo , Feromonas/metabolismo , Receptores de Feromonas/metabolismo , Conducta Sexual Animal , Órgano Vomeronasal/metabolismo , Animales , Femenino , Aparato Lagrimal/metabolismo , Sistema Límbico/citología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neuronas/metabolismo , Feromonas/farmacología , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Feromonas/deficiencia , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología
7.
Neuron ; 95(1): 123-137.e8, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28648498

RESUMEN

In mice, various instinctive behaviors can be triggered by olfactory input. Despite growing knowledge of the brain regions involved in such behaviors, the organization of the neural circuits that convert olfactory input into stereotyped behavioral output remains poorly understood. Here, we mapped the neural circuit responsible for enhancing sexual receptivity of female mice by a male pheromone, exocrine gland-secreting peptide 1 (ESP1). We revealed specific neural types and pathways by which ESP1 information is conveyed from the peripheral receptive organ to the motor-regulating midbrain via the amygdala-hypothalamus axis. In the medial amygdala, a specific type of projection neurons gated ESP1 signals to the ventromedial hypothalamus (VMH) in a sex-dependent manner. In the dorsal VMH, which has been associated with defensive behaviors, a selective neural subpopulation discriminately mediated ESP1 information from a predator cue. Together, our data illuminate a labeled-line organization for controlling pheromone-mediated sexual behavioral output in female mice.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Atractivos Sexuales/metabolismo , Conducta Sexual Animal/fisiología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Señales (Psicología) , Femenino , Hipotálamo/citología , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intercelular , Masculino , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Ratones Transgénicos , Red Nerviosa/fisiología , Neuronas/fisiología , Conducta Predatoria , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...