Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 445-451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440174

RESUMEN

The adenylation (A) domain is essential for non-ribosomal peptide synthetases (NRPSs), which synthesize various peptide-based natural products, including virulence factors, such as siderophores and genotoxins. Hence, the inhibition of A-domains could attenuate the virulence of pathogens. 5'-O-N-(Aminoacyl or arylacyl)sulfamoyladenosine (AA-AMS) is a bisubstrate small-molecule inhibitor of the A-domains of NRPSs. However, the bacterial cell permeability of AA-AMS is typically a problem owing to its high hydrophilicity. In this study, we investigated the influence of a modification of 2'-OH in the AMS scaffold with different functional groups on binding to target enzymes and bacterial cell penetration. The inhibitor 7 with a cyanomethyl group at 2'-OH showed desirable inhibitory activity against both recombinant and intracellular gramicidin S synthetase A (GrsA) in the gramicidin S-producer Aneurinibacillus migulanus ATCC 9999, providing an alternative scaffold to develop novel A-domain inhibitors.

2.
Nihon Saikingaku Zasshi ; 79(1): 1-13, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38382970

RESUMEN

Proteins in the cells are born (synthesized), work, and die (decomposed). In the life of a protein, its birth is obviously important, but how it dies is equally important in living organisms. Proteases secreted into the outside of cells are used to decompose the external proteins and the degradation products are taken as the nutrients. On the other hand, there are also proteases that decompose unnecessary or harmful proteins which are generated in the cells. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for degradation of such proteins. Bacteria, which are prokaryotes, have a similar system as the proteasome. We would like to explain the bacterial degradation system of proteins or the death of proteins, which is performed by ATP-dependent protease Clp, with a particular focus on the ClpXP complex, and with an aspect as a target for antibiotics against bacteria.


Asunto(s)
Bacterias , Complejo de la Endopetidasa Proteasomal , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteasas ATP-Dependientes/metabolismo , Bacterias/metabolismo , Transporte Biológico , Proteínas Bacterianas/metabolismo
3.
RSC Adv ; 14(7): 4471-4481, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38312722

RESUMEN

Herein, ring-cleaved (24) and truncated (25) analogues of an azasugar, 1-deoxynojirimycin (23), exhibited inhibitory activity (Ki = 4-10 µM) equal to that of the parent compound (1, Ki = 14 µM). Based on this structure-activity relationship (SAR), four ring-cleaved (26a-26c and 27c) and three truncated (28a-28c) analogues of salacinol (1), a potent thiosugar-ring-containing α-glucosidase inhibitor, were synthesised. Bioassay results revealed that all the synthetics were inactive, indicating that the 5-membered thiosugar ring of 1 played an essential role in the potent activities of sulfonium-type inhibitors. The present findings are interesting and important in understanding the function of salacinol, considering that the observed inhibitory activity trend was contrary to the SAR observed in aza-compounds (23, 24, and 25) in a previous study, which suggested that the cyclic structure did not contribute to their strong inhibitory activity.

4.
J Pept Sci ; 30(3): e3545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37721208

RESUMEN

Nonribosomal peptide synthetases (NRPSs) biosynthesize nonribosomal peptide (NRP) natural products, which belong to the most promising resources for drug discovery and development because of their wide range of therapeutic applications. The results of genetic, biochemical, and bioinformatics analyses have enhanced our understanding of the mechanisms of the NRPS machinery. A major goal in NRP biosynthesis is to reprogram the NRPS machinery to enable the biosynthetic production of designed peptides. Reprogramming strategies for the NRPS machinery have progressed considerably in recent years, thereby increasing the yields and generating modified peptides. Here, the recent progress in NRPS reprogramming and its application in peptide synthesis are described.


Asunto(s)
Productos Biológicos , Péptido Sintasas , Péptido Sintasas/genética , Péptido Sintasas/análisis , Péptido Sintasas/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptidos
5.
J Nat Prod ; 86(12): 2672-2684, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37964561

RESUMEN

The first total synthesis of calanthoside (1), which exhibits potent proliferative activity against human hair follicle dermal papilla cells, has been achieved in seven steps with an overall yield of 43% on a gram scale starting from anthranilic acid (11). The synthetic strategy features a one-pot process involving thioglucoside bond formation via nucleophilic substitution reaction and enol-glucosylation for building the S-,O-bisdesmoside structure of 1. Moreover, the one-pot reaction showed broad substrate adaptability to several sugar donors other than d-glucose, thus affording S,O-bisglycoside intermediates in ∼84% yield.


Asunto(s)
Glucósidos , Cabello , Humanos , Glucósidos/química , Glicósidos/farmacología , Folículo Piloso
6.
Redox Biol ; 66: 102850, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586249

RESUMEN

Long-chain acyl-CoA synthetase (ACSL) 4 converts polyunsaturated fatty acids (PUFAs) into their acyl-CoAs and plays an important role in maintaining PUFA-containing membrane phospholipids. Here we demonstrated decreases in various kinds of PUFA-containing phospholipid species in ACSL4-deficient murine lung. We then examined the effects of ACSL4 gene deletion on lung injury by treating mice with two pulmonary toxic chemicals: paraquat (PQ) and methotrexate (MTX). The results showed that ACSL4 deficiency attenuated PQ-induced acute lung lesion and decreased mortality. PQ-induced lung inflammation and neutrophil migration were also suppressed in ACSL4-deficient mice. PQ administration increased the levels of phospholipid hydroperoxides in the lung, but ACSL4 gene deletion suppressed their increment. We further found that ACSL4 deficiency attenuated MTX-induced pulmonary fibrosis. These results suggested that ACSL4 gene deletion might confer protection against pulmonary toxic chemical-induced lung injury by reducing PUFA-containing membrane phospholipids, leading to the suppression of lipid peroxidation. Inhibition of ACSL4 may be promising for the prevention and treatment of chemical-induced lung injury.


Asunto(s)
Lesión Pulmonar , Ratones , Animales , Peroxidación de Lípido , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Xenobióticos , Eliminación de Gen , Fosfolípidos , Ácidos Grasos Insaturados , Pulmón , Ligasas
7.
Chem Commun (Camb) ; 59(62): 9473-9476, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37477345

RESUMEN

We describe activity-based protein profiling for analyzing the adenylation domains of non-ribosomal peptide synthetases (ABPP-NRPS) in bacterial proteomes. Using a range of non-proteoinogenic amino acid sulfamoyladenosines, the competitive format of ABPP-NRPS provided substrate tolerance toward non-proteinogenic amino acids. When coupled with precursor-directed biosynthesis, a non-proteinogenic amino acid (O-allyl-L-serine) was successfully incorporated into gramicidin S.


Asunto(s)
Aminoácidos , Péptidos , Bacterias/metabolismo , Gramicidina , Péptido Sintasas/química , Especificidad por Sustrato
8.
Methods Mol Biol ; 2670: 69-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184700

RESUMEN

Many amino acid-containing natural products are biosynthesized by large, multifunctional enzymes known as non-ribosomal peptide synthetases (NRPSs). Adenylation (A) domains in NRPSs are responsible for the incorporation of amino acid building blocks and can be considered as engineering domains; therefore, advanced techniques are required to not only rapidly verify expression and folding, but also accelerate the functional prediction of the A-domains in lysates from native and heterologous systems. We recently developed activity-based protein profiling (ABPP) of NRPSs that offers a simple and robust analytical platform for A-domains and provides insights into their enzyme-substrate specificity. In this chapter, we describe the design and synthesis of these ABPP probes and provide a summary of our work on the development of a series of protocols for labeling, visualizing, and analyzing endogenous NRPSs in complex biological systems.


Asunto(s)
Gramicidina , Péptido Sintasas , Péptido Sintasas/química , Especificidad por Sustrato , Aminoácidos
9.
Methods Mol Biol ; 2670: 285-299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184711

RESUMEN

4'-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4'-phosphopantetheinyl group. To detect 4'-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5'-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4'-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4'-phosphopantetheinylation of endogenous NRPSs in complex proteomes.


Asunto(s)
Adenosina , Proteoma , Adenosina/química , Bacterias/metabolismo , Péptido Sintasas/química
10.
Biochem Biophys Res Commun ; 649: 1-9, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738577

RESUMEN

Aggressive cancers, such as triple-negative breast cancer (TNBC), are mostly fatal because of their potential to metastasize to distant organs. Cancer cells acquire various abilities to metastasize, including resistance to anoikis, an apoptotic cell death induced by loss of anchorage to the extracellular matrix. Transcriptional coactivator with PDZ binding motif (TAZ) and Yes-associated protein (YAP), the downstream effectors of the Hippo pathway, regulate cell- and tissue-level architectures by responding to mechanical microenvironments of cells, including the cell-extracellular matrix interaction. The Hippo pathway is frequently disrupted in cancer cells, and TAZ and YAP are irrelevantly activated, potentially resulting in anchorage-independent survival/proliferation of cancer cells and metastatic progression. The study aims to investigate the roles of TAZ and YAP in anoikis resistance in basal-like (BL) TNBC cells, which comprise a major subtype (>70%) of TNBC. We found that TAZ and YAP had nonredundant roles in anchorage-independent cancer cell survival or anoikis resistance. Particularly, TAZ was indispensable for anoikis resistance in BL-TNBC cells but not for survival of non-transformed mammary epithelial cells (MECs). In contrast, YAP, a paralog of TAZ, was indispensable for survival of both non-transformed MECs and cancer cells. Therefore, TAZ might be a preferable therapeutic target against dissemination of aggressive cancer cells without killing normal cells. Interestingly, TAZ was abnormally stabilized in BL-TNBC cells under non-adherent conditions, which promoted anoikis resistance. Furthermore, OTUB1, a deubiquitinating enzyme, was responsible for the stabilization of TAZ in detached BL-TNBC cells. Importantly, simultaneous high expression of TAZ and OTUB1 was associated with poor prognosis in BC. Thus, OTUB1 has emerged as a potentially druggable target. Successful inhibition of OTUB1 enzymatic activity is expected to downregulate TAZ and eventually prevents metastasis of aggressive cancers, such as BL-TNBC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama Triple Negativas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anoicis/fisiología , Neoplasias de la Mama Triple Negativas/patología , Proteínas Señalizadoras YAP , Enzimas Desubicuitinizantes/metabolismo , Microambiente Tumoral
11.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220026, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633280

RESUMEN

Non-ribosomal peptide synthetases (NRPSs) biosynthesize many pharmaceuticals and virulence factors. The biosynthesis of these natural peptide products from biosynthetic gene clusters depends on complex regulations in bacteria. However, our current knowledge of NRPSs is based on enzymological studies using full NRPS systems and/or a single NRPS domain in heterologous hosts. Chemical and/or biochemical strategies to capture the endogenous activities of NRPSs facilitate studies on NRPS cell biology in bacterial cells. Here, we describe a chemical scaffold for the rapid and selective photoaffinity labelling of NRPSs in purified systems, crude biological samples and living bacterial cells. We synthesized photoaffinity labelling probes coupled with 5'-O-N-(phenylalanyl)sulfamoyladenosine with clickable alkyl diazirine or trifluoromethyl phenyl diazirine. We found that a trifluoromethyl phenyl diazirine-based probe cross-linked the Phe-activating domain of a GrsA-NRPS with high selectivity and sensitivity at shorter ultraviolet (UV) irradiation times (less than 5 min) relative to a prototypical benzophenone-based probe. Our results demonstrated that this quick labelling protocol can prevent damage to proteins and cells caused by long UV irradiation times, providing a mild photoaffinity labelling method for biological samples. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Bacterias , Diazometano , Diazometano/metabolismo , Bacterias/genética , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Familia de Multigenes
12.
Cancer Sci ; 114(1): 152-163, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36102493

RESUMEN

Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/patología , ADN Mitocondrial , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Proliferación Celular/genética , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
13.
Genes (Basel) ; 13(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36553449

RESUMEN

Homeostasis is achieved by balancing cell survival and death. In cancer cells, especially those carrying driver mutations, the processes and signals that promote apoptosis are inhibited, facilitating the survival and proliferation of these dysregulated cells. Apoptosis induction is an important mechanism underlying the therapeutic efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) for EGFR-mutated non-small cell lung cancer (NSCLC). However, the mechanisms by which EGFR-TKIs induce apoptosis have not been fully elucidated. A deeper understanding of the apoptotic pathways induced by EGFR-TKIs is essential for the developing novel strategies to overcome resistance to EGFR-TKIs or to enhance the initial efficacy through therapeutic synergistic combinations. Recently, therapeutic strategies targeting apoptosis have been developed for cancer. Here, we review the state of knowledge on EGFR-TKI-induced apoptotic pathways and discuss the therapeutic strategies for enhancing EGFR-TKI efficiency. We highlight the great progress achieved with third-generation EGFR-TKIs. In particular, combination therapies of EGFR-TKIs with anti-vascular endothelial growth factor/receptor inhibitors or chemotherapy have emerged as promising therapeutic strategies for patients with EGFR-mutated NSCLC. Nevertheless, further breakthroughs are needed to yield an appropriate standard care for patients with EGFR-mutated NSCLC, which requires gaining a deeper understanding of cancer cell dynamics in response to EGFR-TKIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Apoptosis
14.
Bioorg Med Chem Lett ; 78: 129034, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36273707

RESUMEN

Although 4,5-didehydroguadiscine (12a), an alkaloid with potent melanogenesis-inhibitory activity isolated from Hornschuchia obliqua (Annonaceae), consists of an aporphine nucleus with an aromatized B-ring, to date, it has not been utilized as a template for structure-activity relationship (SAR) studies of pharmacological activities because of its exceptional structure. Accordingly, herein, five analogs (12b-12f) of 12a and five benzylisoquinoline analogs (13b-13f) lacking the C11a-C11b bond of 12b-12f were prepared. The inhibitory effects of 12b-12f and 13b-13f on melanogenesis in theophylline-stimulated B16 melanoma 4A5 cells were examined and compared with those of 12a. Melanogenesis-inhibitory activities of 12b-12f were the same as that of 12a, whereas the melanogenesis-inhibitory activities of 13b-13f were significantly inferior to those of 12a and 12b-12f. These results suggest that the C11a-C11b bond plays an essential role in the melanogenesis-inhibitory activities of 12a-12e.


Asunto(s)
Alcaloides , Antineoplásicos , Aporfinas , Melanoma Experimental , Animales , Melanoma Experimental/tratamiento farmacológico , Melaninas , Estructura Molecular , Aporfinas/farmacología , Relación Estructura-Actividad , Alcaloides/química , Antineoplásicos/farmacología , Línea Celular Tumoral
15.
Cells ; 11(14)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35883645

RESUMEN

Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is used as a first-line treatment for patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, the mechanisms underlying its anticancer activity, particularly the subsequent development of acquired resistance, are unclear. Herein, we investigated the mechanisms underlying the development of osimertinib resistance by treating NSCLC PC-9 cells (harboring an EGFR-activating mutation) with osimertinib, thereby developing five resistant cell lines, i.e., AZDR3, AZDR6, AZDR9, AZDR11, and AZDR14. The amplification of wild-type EGFR in AZDR3 cells and wild-type EGFR and KRAS in AZDR6 cells was also studied. AZDR3 cells showed dependence on EGFR signaling, in addition to afatinib sensitivity. AZDR9 cells harboring KRASG13D showed sensitivity to MEK inhibitors. Furthermore, combination treatment with EGFR and IGF1R inhibitors resulted in attenuated cell proliferation and enhanced apoptosis. In AZDR11 cells, increased Bim expression could not induce apoptosis, but Bid cleavage was found to be essential for the same. A SHP2/T507K mutation was also identified in AZDR14 cells, and, when associated with GAB1, SHP2 could activate ERK1/2, whereas a SHP2 inhibitor, TNO155, disrupted this association, thereby inhibiting GAB1 activation. Thus, diverse osimertinib resistance mechanisms were identified, providing insights for developing novel therapeutic strategies for NSCLC.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acrilamidas , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Indoles , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas
16.
Am J Med Sci ; 364(6): 706-713, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35809647

RESUMEN

BACKGROUND: In Japan, during the coronavirus disease 2019 (COVID-19) pandemic, patients with non-hypoxia are recommended to recuperate at home or in pre-hospital facilities. However, it was observed that unexpected hypoxia may occur and become severe subsequently in patients whose symptoms were initially expected to improve naturally. The aim of this study is to validate biomarkers that can predict at an early stage the emergence of hypoxia in COVID-19 patients without hypoxia. METHODS: We retrospectively enrolled 193 patients with COVID-19, excluding patients with hypoxia and severe disease from the onset. Participants were classified into two groups according to the emergence of hypoxia during the clinical course, and the laboratory data were compared to identify biomarkers that could predict early the emergence of hypoxia. RESULTS: The areas under the curve for serum cystatin C (CysC) and C-reactive protein (CRP) levels for the emergence of hypoxia during the clinical course were higher than those for other biomarkers (CysC, 0.84 and CRP, 0.83). Multivariate analysis showed that high serum CysC and CRP levels were associated with the emergence of hypoxia during the clinical course. CONCLUSIONS: Elevated serum CysC and CRP levels were associated with the emergence of hypoxia during the clinical course in COVID-19 patients without hypoxia. These findings may help determine the need for hospitalization in initially non-hypoxic COVID-19 patients.


Asunto(s)
COVID-19 , Cistatina C , Humanos , Proteína C-Reactiva , Estudios Retrospectivos , Valor Predictivo de las Pruebas , Biomarcadores
17.
STAR Protoc ; 3(3): 101462, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35719724

RESUMEN

We present an in vitro and in-cell activity-based protein profiling (ABPP) protocol for endogenous nonribosomal peptide synthetases (NRPSs). This protocol enables the fluorescence labeling and imaging of an endogenous SrfAB-NRPS with high selectivity and sensitivity in the surfactin producer Bacillus subtilis. While we optimized this protocol for use with B. subtilis, the protocol can be applied to Aneurinibacillus migulanus and Escherichia coli. For complete details on the use and execution of this protocol, please refer to Ishikawa et al. (2022).


Asunto(s)
Bacillus subtilis , Péptido Sintasas , Bacillus subtilis/metabolismo , Escherichia coli/genética , Péptido Sintasas/química
18.
RSC Chem Biol ; 3(3): 312-319, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35359491

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are complex multi-modular enzymes containing catalytic domains responsible for the loading and incorporation of amino acids into natural products. These unique molecular factories can produce peptides with nonproteinogenic d-amino acids in which the epimerization (E) domain catalyzes the conversion of l-amino acids to d-amino acids, but its mechanism remains not fully understood. Here, we describe the development of pantetheine crosslinking probes that mimic the natural substrate l-Phe of the initiation module of tyrocidine synthetase, TycA, to elucidate and study the catalytic residues of the E domain. Mechanism-based crosslinking assays and MALDI-TOF MS were used to identify both H743 and E882 as the crosslinking site residues, demonstrating their roles as catalytic bases. Mutagenesis studies further validated these results and allowed the comparison of reactivity between the catalytic residues, concluding that glutamate acts as the dominant nucleophile in the crosslinking reaction, resembling the deprotonation of the Cα-H of amino acids in the epimerization reaction. The crosslinking probes employed in these studies provide new tools for studying the molecular details of E domains, as well as the potential to study C domains. In particular, they would elucidate key information for how these domains function and interact with their substrates in nature, further enhancing the knowledge needed to assist combinatorial biosynthetic efforts of NRPS systems to produce novel compounds.

19.
Cell Chem Biol ; 29(1): 145-156.e8, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34133952

RESUMEN

Much of our current knowledge on nonribosomal peptide synthetases (NRPSs) is based on studies in which the full NRPS system or each protein domain is expressed in heterologous hosts. Consequently, methods to detect the endogenous activity of NRPSs, under natural cellular conditions, are needed for the study of NRPS cell biology. Here, we describe the in vivo activity-based protein profiling (ABPP) for endogenous NRPSs and its applications to the study of their activities in bacteria. Remarkably, in vitro and in vivo ABPP in the context of the surfactin producer Bacillus subtilis enabled the visualization, tracking, and imaging of an endogenous SrfAB-NRPS with remarkable selectivity and sensitivity. Furthermore, in vivo, ABPP allowed the discovery of the degradation processes of the endogenous SrfAB-NRPS in the context of its native producer bacteria. Overall, this study deepens our understanding of the properties of NRPSs that cannot be addressed by conventional methods.


Asunto(s)
Bacillus subtilis/enzimología , Lipopéptidos/biosíntesis , Péptido Sintasas/metabolismo , Proteómica , Bacillus subtilis/citología , Lipopéptidos/química , Conformación Proteica
20.
Infect Prev Pract ; 3(4): 100190, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841243

RESUMEN

BACKGROUND: A characteristic feature of SARS-CoV-2 is its ability to transmit from pre- or asymptomatic patients, complicating the tracing of infection pathways and causing outbreaks. Despite several reports that whole genome sequencing (WGS) and haplotype networks are useful for epidemiologic analysis, little is known about their use in nosocomial infections. AIM: We aimed to demonstrate the advantages of genetic epidemiology in identifying the link in nosocomial infection by comparing single nucleotide variations (SNVs) of isolates from patients associated with an outbreak in Showa University Hospital. METHODS: We used specimens from 32 patients in whom COVID-19 had been diagnosed using clinical reverse transcription-polymerase chain reaction tests. RNA of SARS-CoV-2 from specimens was reverse-transcribed and analysed using WGS. SNVs were extracted and used for lineage determination, phylogenetic tree analysis, and median-joining analysis. FINDINGS: The lineage of SARS-CoV-2 that was associated with outbreak in Showa University Hospital was B.1.1.214, which was consistent with that found in the Kanto metropolitan area during the same period. Consistent with canonical epidemiological observations, haplotype network analysis was successful for the classification of patients. Additionally, phylogenetic tree analysis revealed three independent introductions of the virus into the hospital during the outbreak. Further, median-joining analysis indicated that four patients were directly infected by any of the others in the same cluster. CONCLUSION: Genetic epidemiology with WGS and haplotype networks is useful for tracing transmission and optimizing prevention strategies in nosocomial outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA