Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0128023, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38426728

RESUMEN

We report the complete genome sequences of six bacterial strains isolated from a floating macrophyte, duckweed. These six strains, representing the six dominant families of the natural duckweed microbiome, establish a simple model ecosystem when inoculated onto sterilized duckweed. Their genomes would provide insights into community assembly in plant microbiome.

2.
Proc Natl Acad Sci U S A ; 121(7): e2312396121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315845

RESUMEN

Understanding the assembly of multispecies microbial communities represents a significant challenge in ecology and has wide applications in agriculture, wastewater treatment, and human healthcare domains. Traditionally, studies on the microbial community assembly focused on analyzing pairwise relationships among species; however, neglecting higher-order interactions, i.e., the change of pairwise relationships in the community context, may lead to substantial deviation from reality. Herein, we have proposed a simple framework that incorporates higher-order interactions into a bottom-up prediction of the microbial community assembly and examined its accuracy using a seven-member synthetic bacterial community on a host plant, duckweed. Although the synthetic community exhibited emergent properties that cannot be predicted from pairwise coculturing results, our results demonstrated that incorporating information from three-member combinations allows the acceptable prediction of the community structure and actual interaction forces within it. This reflects that the occurrence of higher-order effects follows consistent patterns, which can be predicted even from trio combinations, the smallest unit of higher-order interactions. These results highlight the possibility of predicting, explaining, and understanding the microbial community structure from the bottom-up by learning interspecies interactions from simple beyond-pairwise combinations.


Asunto(s)
Interacciones Microbianas , Microbiota , Humanos , Ecología , Bacterias
3.
Microbiol Resour Announc ; 11(12): e0114622, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36409112

RESUMEN

We report the complete genome sequences of two predatory bacterial strains, Bacteriovorax sp. HI3 and Myxococcus sp. MH1, which were isolated from a freshwater pond. These two strains are grouped with the Bdellovibrio and like organisms and myxobacteria, respectively. Their genomes expand our knowledge of the characteristics of predatory bacteria.

4.
Microorganisms ; 10(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144418

RESUMEN

Predatory bacteria, which prey on other bacteria, have significant functions in microbial ecosystems and have attracted increasing attention for their biotechnological use. However, knowledge of the characteristics of wild-type environmental predatory bacteria remains limited. This study isolated two predatory bacteria, Bacteriovorax stolpii HI3 and Myxococcus sp. MH1, from a freshwater pond and characterized their predation capabilities. Determination of the prey range using 53 potential prey strains, including 52 environmental strains, revealed that B. stolpii HI3 and Myxococcus sp. MH1 could prey on a wide spectrum of Gram-negative bacteria and a broader range of bacteria, irrespective of phylogeny, in accordance with the common characteristics of Bdellovibrio and like organisms and myxobacteria, respectively. Liquid culture assays also found that although predation by B. stolpii HI3 rapidly and largely occurred, the prey bacteria regrew, possibly through plastic phenotypic resistance to predation. In contrast, predation by Myxococcus sp. MH1 occurred at relatively low efficiency but was longer lasting. The two strains exhibited slightly distinct temperature preferences but commonly preferred slightly alkaline pH. The novel findings of this study provide evidence for the coexistence of predatory bacteria with diverse predation capabilities in the natural aquatic environment.

5.
Commun Biol ; 5(1): 68, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046504

RESUMEN

Bacterial communities associated with aquatic macrophytes largely influence host primary production and nutrient cycling in freshwater environments; however, little is known about how specific bacteria migrate to and proliferate at this unique habitat. Here, we separately identified bacterial genes involved in the initial colonization and overall fitness on plant surface, using the genome-wide transposon sequencing (Tn-seq) of Aquitalea magnusonii H3, a plant growth-promoting bacterium of the floating macrophyte, duckweed. Functional annotation of identified genes indicated that initial colonization efficiency might be simply explained by motility and cell surface structure, while overall fitness was associated with diverse metabolic and regulatory functions. Genes involved in lipopolysaccharides and type-IV pili biosynthesis showed different contributions to colonization and fitness, reflecting their metabolic cost and profound roles in host association. These results provide a comprehensive genetic perspective on aquatic-plant-bacterial interactions, and highlight the potential trade-off between bacterial colonization and proliferation abilities on plant surface.


Asunto(s)
Araceae/microbiología , Betaproteobacteria/genética , Genes Bacterianos , Aptitud Genética , Estudio de Asociación del Genoma Completo
6.
Bioresour Technol ; 344(Pt B): 126324, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34785335

RESUMEN

Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.


Asunto(s)
Ingredientes Alimentarios , Microalgas , Eliminación de Residuos , Biocombustibles , Biomasa , Alimentos , Manipulación de Alimentos
7.
Microbes Environ ; 36(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34645730

RESUMEN

The collapse of Comamonas testosteroni R2 under chemostat conditions and the aerobic growth of strain R2 under batch conditions with phenol as the sole carbon source were investigated using physiological and transcriptomic techniques. Phenol-/catechol-degrading activities under chemostat conditions gradually decreased, suggesting that metabolites produced from strain R2 accumulated in the culture, which caused negative feedback. The competitive inhibition of phenol hydroxylase and catechol dioxygenase was observed in a crude extract of the supernatant collected from the collapsed culture. Transcriptomic analyses showed that genes related to nitrogen transport were up-regulated; the ammonium transporter amtB was up-regulated approximately 190-fold in the collapsed status, suggesting an increase in the concentration of ammonium in cells. The transcriptional levels of most of the genes related to gluconeogenesis, glycolysis, the pentose phosphate pathway, and the TCA and urea cycles decreased by ~0.7-fold in the stable status, whereas the activities of glutamate synthase and glutamine synthetase increased by ~2-fold. These results suggest that ammonium was assimilated into glutamate and glutamine via 2-oxoglutarate under the limited supply of carbon skeletons, whereas the synthesis of other amino acids and nucleotides was repressed by 0.6-fold. Furthermore, negative feedback appeared to cause an imbalance between carbon and nitrogen metabolism, resulting in collapse. The effects of amino acids on negative feedback were investigated. L-arginine allowed strain R2 to grow normally, even under growth-inhibiting conditions, suggesting that the imbalance was corrected by the stimulation of the urea cycle, resulting in the rescue of strain R2.


Asunto(s)
Compuestos de Amonio , Arginina , Carbono/metabolismo , Comamonas testosteroni , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Arginina/metabolismo , Catecoles/metabolismo , Comamonas testosteroni/metabolismo , Retroalimentación , Fenol , Fenoles/metabolismo , Urea/metabolismo
8.
Microbes Environ ; 35(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268659

RESUMEN

A complete understanding of the plant microbiome has not yet been achieved due to its complexity and temporal shifts in the community structure. To overcome these issues, we created a synthetic bacterial community of the aquatic plant, duckweed. The synthetic community established with six bacterial strains showed a stable composition for 50 days, which may have been because duckweed maintains a similar physiological status through its clonal reproduction. Additionally, the synthetic community reflected the taxonomic structure of the natural duckweed microbiome at the family level. These results suggest the potential of a duckweed-based synthetic community as a useful model system for examining the community assembly mechanisms of the plant microbiome.


Asunto(s)
Araceae/microbiología , Araceae/fisiología , Fenómenos Fisiológicos Bacterianos , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Filogenia
9.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32445473

RESUMEN

Plant growth-promoting bacteria (PGPB) have recently been demonstrated as a promising agent to improve wastewater treatment and biomass production efficiency of duckweed hydrocultures. With a view to their reliable use in aqueous environments, this study analysed the plant colonization dynamics of PGPB and the ecological consequences for the entire duckweed-associated bacterial community. A PGPB strain, Aquitalea magnusonii H3, was inoculated to duckweed at different cell densities or timings in the presence of three environmental bacterial communities. The results showed that strain H3 improved duckweed growth by 11.7-32.1% in five out of nine experiments. Quantitative-PCR and amplicon sequencing analyses showed that strain H3 successfully colonized duckweed after 1 and 3 d of inoculation in all cultivation tests. However, it significantly decreased in number after 7 d, and similar bacterial communities were observed on duckweed regardless of H3 inoculation. Predicted metagenome analysis suggested that genes related to bacterial chemotactic motility and surface attachment systems are consistently enriched through community assembly on duckweed. Taken together, strain H3 dominantly colonized duckweed for a short period and improved duckweed growth. However, the inoculation of the PGPB did not have a lasting impact due to the strong resilience of the natural duckweed microbiome.


Asunto(s)
Araceae , Microbiota , Bacterias/genética , Betaproteobacteria , Desarrollo de la Planta , Raíces de Plantas
10.
Chemosphere ; 238: 124682, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31524619

RESUMEN

Plant growth-promoting bacteria (PGPB) are considered a promising tool to improve biomass production and water remediation by the aquatic plant, duckweed; however, no effective methodology is available to utilize PGPB in large hydroponic systems. In this study, we proposed a two-step cultivation process, which comprised of a "colonization step" and a "mass cultivation step," and examined its efficacy in both bucket-scale and flask-scale cultivation experiments. We showed that in the outdoor bucket-scale experiments using three kinds of environmental water, plants cultured through the two-step cultivation method with the PGPB strain, Acinetobacter calcoaceticus P23, yielded 1.9 to 2.3 times more biomass than the control (without PGPB inoculation). The greater nitrogen and phosphorus removals compared to control were also attained, indicating that this strategy is useful for accelerating nutrient removal by duckweed. Flask-scale experiments using non-sterile pond water revealed that inoculation of strain P23 altered duckweed surface microbial community structures, and the beneficial effects of the inoculated strain P23 could last for 5-10 d. The loss of the duckweed growth-promoting effect was noticeable when the colonization of strain P23 decreased in the plant. These observations suggest that the stable colonization of the plant with PGPB is the key for maintaining the accelerated duckweed growth and nutrient removal in this cultivation method. Overall, our results suggest the possibility of an improved duckweed production using a two-step cultivation process with PGPB.


Asunto(s)
Acinetobacter calcoaceticus/metabolismo , Araceae/crecimiento & desarrollo , Araceae/microbiología , Hidroponía/métodos , Microbiota/fisiología , Biomasa , Agua Dulce , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Desarrollo de la Planta , Purificación del Agua/métodos
11.
Microb Ecol ; 77(2): 440-450, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30603770

RESUMEN

Despite the considerable role of aquatic plant-associated bacteria in host plant growth and nutrient cycling in aquatic environments, the mode of their plant colonization has hardly been understood. This study examined the colonization and competition dynamics of a plant growth-promoting bacterium (PGPB) and two plant growth-inhibiting bacteria (PGIB) in the aquatic plant Lemna minor (common duckweed). When inoculated separately to L. minor, each bacterial strain quickly colonized at approximately 106 cells per milligram (plant fresh weight) and kept similar populations throughout the 7-day cultivation time. The results of two-membered co-inoculation assays revealed that the PGPB strain Aquitalea magnusonii H3 consistently competitively excluded the PGIB strain Acinetobacter ursingii M3, and strain H3 co-existed at almost 1:1 proportion with another PGIB strain, Asticcacaulis excentricus M6, regardless of the inoculation ratios (99:1-1:99) and inoculation order. We also found that A. magnusonii H3 exerted its growth-promoting effect over the negative effects of the two PGIB strains even when only a small amount was inoculated, probably due to its excellent competitive colonization ability. These experimental results demonstrate that there is a constant ecological equilibrium state involved in the bacterial colonization of aquatic plants.


Asunto(s)
Inoculantes Agrícolas/aislamiento & purificación , Araceae/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Raíces de Plantas/microbiología , Inoculantes Agrícolas/clasificación , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/crecimiento & desarrollo , Araceae/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biodiversidad , Raíces de Plantas/crecimiento & desarrollo
12.
Artículo en Inglés | MEDLINE | ID: mdl-30533652

RESUMEN

Acinetobacter ursingii M3 and Asticcacaulis excentricus M6 are plant growth-inhibiting bacteria that reduce the yield of the duckweed Lemna minor. We report here the complete genome sequences of A. ursingii M3 and A. excentricus M6, sequenced using the PacBio RS II platform.

13.
Genome Announc ; 5(47)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167253

RESUMEN

Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI.

14.
Plant Physiol Biochem ; 118: 667-673, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28818809

RESUMEN

Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O2•-, H2O2, and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O2•- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth.


Asunto(s)
Araceae , Bacterias/crecimiento & desarrollo , Estrés Oxidativo , Rizoma , Araceae/metabolismo , Araceae/microbiología , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Rizoma/metabolismo , Rizoma/microbiología , Superóxidos/metabolismo
15.
Genome Announc ; 5(33)2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818906

RESUMEN

Aquitalea magnusonii strain H3 is a promising plant growth-promoting bacterium for duckweed. Here, we report the draft genome sequence of strain H3 comprising 4,750,601 bp in 73 contigs. Several genes associated with plant root colonization were identified.

16.
Biotechnol Biofuels ; 10: 62, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293292

RESUMEN

BACKGROUND: Duckweed (family Lemnaceae) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor, focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. RESULTS: Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor. To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor, resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. CONCLUSION: Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co-existing bacterial communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...