Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107459, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857861

RESUMEN

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 PIP3 binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.

2.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142308

RESUMEN

Genetically encoded caged amino acids can be used to control the dynamics of protein activities and cellular localization in response to external cues. In the present study, we revealed the structural basis for the recognition of O-(2-nitrobenzyl)-L-tyrosine (oNBTyr) by its specific variant of Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (oNBTyrRS), and then demonstrated its potential availability for time-resolved X-ray crystallography. The substrate-bound crystal structure of oNBTyrRS at a 2.79 Å resolution indicated that the replacement of tyrosine and leucine at positions 32 and 65 by glycine (Tyr32Gly and Leu65Gly, respectively) and Asp158Ser created sufficient space for entry of the bulky substitute into the amino acid binding pocket, while Glu in place of Leu162 formed a hydrogen bond with the nitro moiety of oNBTyr. We also produced an oNBTyr-containing lysozyme through a cell-free protein synthesis system derived from the Escherichia coli B95. ΔA strain with the UAG codon reassigned to the nonnatural amino acid. Another crystallographic study of the caged protein showed that the site-specifically incorporated oNBTyr was degraded to tyrosine by light irradiation of the crystals. Thus, cell-free protein synthesis of caged proteins with oNBTyr could facilitate time-resolved structural analysis of proteins, including medically important membrane proteins.


Asunto(s)
Methanocaldococcus/enzimología , Tirosina-ARNt Ligasa , Codón de Terminación/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Muramidasa/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
3.
Sci Rep ; 10(1): 19305, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168855

RESUMEN

In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Lípidos/química , Monoglicéridos/química , Terpenos/química , Animales , Colesterol/química , Cristalización , Escherichia coli , Proteínas de la Membrana/química , Receptores de Adenosina A2/química , Células Sf9 , Spodoptera , Sincrotrones , Temperatura , Rayos X
4.
Sci Adv ; 5(1): eaau8149, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30729160

RESUMEN

V1-ATPase is an ATP-driven rotary motor that is composed of a ring-shaped A3B3 complex and a central DF shaft. The nucleotide-free A3B3 complex of Enterococcus hirae, composed of three identical A1B1 heterodimers, showed a unique asymmetrical structure, probably due to the strong binding of the N-terminal barrel domain, which forms a crown structure. Here, we mutated the barrel region to weaken the crown, and performed structural analyses using high-speed atomic force microscopy and x-ray crystallography of the mutant A3B3. The nucleotide-free mutant A3B3 complex had a more symmetrical open structure than the wild type. Binding of nucleotides produced a closely packed spiral-like structure with a disrupted crown. These findings suggest that wild-type A3B3 forms a metastable (stressed) asymmetric structure composed of unstable A1B1 conformers due to the strong constraint of the crown. The results further the understanding of the principle of the cooperative transition mechanism of rotary motors.


Asunto(s)
Enterococcus hirae/enzimología , Estructura Cuaternaria de Proteína , ATPasas de Translocación de Protón Vacuolares/química , Sitios de Unión , Biocatálisis , Sistema Libre de Células/metabolismo , Cristalografía por Rayos X , Escherichia coli/citología , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Proteínas Mutantes/química , Mutación , Nucleótidos/química , Dominios Proteicos/genética , Multimerización de Proteína , Subunidades de Proteína/química , Rotación
5.
Protein Sci ; 26(9): 1749-1758, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28608415

RESUMEN

Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P221 21 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P221 21 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with ß-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family.


Asunto(s)
Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Propiedades de Superficie , Canal Aniónico 1 Dependiente del Voltaje/genética
6.
J Biol Chem ; 292(32): 13428-13440, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655765

RESUMEN

Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary ß subunits, designated as ß1/ß1B-ß4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the trans homophilic interaction of the ß4 subunit, which contributes to its adhesive function. Here, using crystallographic and biochemical analyses, we show that the ß4 extracellular domains directly interact with each other in a parallel manner that involves an intermolecular disulfide bond between the unpaired Cys residues (Cys58) in the loop connecting strands B and C and intermolecular hydrophobic and hydrogen-bonding interactions of the N-terminal segments (Ser30-Val35). Under reducing conditions, an N-terminally deleted ß4 mutant exhibited decreased cell adhesion compared with the wild type, indicating that the ß4 cis dimer contributes to the trans homophilic interaction of ß4 in cell-cell adhesion. Furthermore, this mutant exhibited increased association with the α subunit, indicating that the cis dimerization of ß4 affects α-ß4 complex formation. These observations provide the structural basis for the parallel dimer formation of ß4 in VGSCs and reveal its mechanism in cell-cell adhesion.


Asunto(s)
Modelos Moleculares , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Adhesión Celular , Cricetulus , Cristalografía por Rayos X , Cisteína/química , Cistina/química , Dimerización , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
7.
Nat Commun ; 7: 13235, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27807367

RESUMEN

V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 µM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Difosfato , Adenilil Imidodifosfato , Cristalografía por Rayos X , Escherichia coli , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/química
8.
Sci Rep ; 6: 30442, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465719

RESUMEN

The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1-1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin.


Asunto(s)
Mamíferos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ultracentrifugación/métodos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Membrana Celular/metabolismo , Sistema Libre de Células , Precipitación Química , Claudina-4/química , Claudina-4/metabolismo , Cristalografía por Rayos X , Enterotoxinas/química , Enterotoxinas/metabolismo , Glucosiltransferasas/aislamiento & purificación , Glucosiltransferasas/metabolismo , Humanos , Lípidos/química , Subunidades de Proteína/metabolismo , Solubilidad , Fracciones Subcelulares/metabolismo
9.
Sci Rep ; 6: 26618, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216889

RESUMEN

The ß1, ß2, and ß4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the ß4 extracellular domain revealed an antiparallel arrangement of the ß4 molecules in the crystal lattice. The interface between the two antiparallel ß4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the ß4-mediated cell-cell adhesion revealed that the interface between the antiparallel ß4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of ß4 in cell-cell adhesion. This trans interaction mode is also employed in the ß1-mediated cell-cell adhesion. Moreover, the ß1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the ß1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the ß-subunit-mediated cell-cell adhesion has been established.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Adhesión Celular , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Dominios Proteicos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
10.
Biosci Biotechnol Biochem ; 80(5): 878-90, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26865189

RESUMEN

The mammalian peripheral stalk subunits of the vacuolar-type H(+)-ATPases (V-ATPases) possess several isoforms (C1, C2, E1, E2, G1, G2, G3, a1, a2, a3, and a4), which may play significant role in regulating ATPase assembly and disassembly in different tissues. To better understand the structure and function of V-ATPase, we expressed and purified several isoforms of the human V-ATPase peripheral stalk: E1G1, E1G2, E1G3, E2G1, E2G2, E2G3, C1, C2, H, a1NT, and a2NT. Here, we investigated and characterized the isoforms of the peripheral stalk region of human V-ATPase with respect to their affinity and kinetics in different combination. We found that different isoforms interacted in a similar manner with the isoforms of other subunits. The differences in binding affinities among isoforms were minor from our in vitro studies. However, such minor differences from the binding interaction among isoforms might provide valuable information for the future structural-functional studies of this holoenzyme.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Sistema Libre de Células/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
11.
Proc Natl Acad Sci U S A ; 111(29): 10544-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25009180

RESUMEN

γ-Secretase is an intramembrane-cleaving protease responsible for the generation of amyloid-ß (Aß) peptides. Recently, a series of compounds called γ-secretase modulators (GSMs) has been shown to decrease the levels of long toxic Aß species (i.e., Aß42), with a concomitant elevation of the production of shorter Aß species. In this study, we show that a phenylimidazole-type GSM allosterically induces conformational changes in the catalytic site of γ-secretase to augment the proteolytic activity. Analyses using the photoaffinity labeling technique and systematic mutational studies revealed that the phenylimidazole-type GSM targets a previously unidentified extracellular binding pocket within the N-terminal fragment of presenilin (PS). Collectively, we provide a model for the mechanism of action of the phenylimidazole-type GSM in which binding at the luminal side of PS induces a conformational change in the catalytic center of γ-secretase to modulate Aß production.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Imidazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Aminoácidos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Dominio Catalítico , Activación Enzimática/efectos de los fármacos , Fluorescencia , Humanos , Imidazoles/química , Modelos Moleculares , Mutación/genética , Péptidos/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato/efectos de los fármacos
12.
J Biol Chem ; 288(45): 32700-32707, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24089518

RESUMEN

V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 µM at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 µM ATP (<>Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Enterococcus/enzimología , Modelos Moleculares , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Enterococcus/genética , Cinética , Estructura Cuaternaria de Proteína , Thermus thermophilus/enzimología , Thermus thermophilus/genética , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
13.
PLoS One ; 8(9): e74291, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058539

RESUMEN

Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.


Asunto(s)
Enterococcus/enzimología , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Modelos Moleculares , Proteínas Mutantes/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
14.
PLoS One ; 8(2): e55704, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409023

RESUMEN

Peripheral stalk subunits of eukaryotic or mammalian vacuolar ATPases (V-ATPases) play key roles in regulating its assembly and disassembly. In a previous study, we purified several subunits and their isoforms of the peripheral stalk region of Homo sapiens (human) V-ATPase; such as C1, E1G1, H, and the N-terminal cytoplasmic region of V(o), a1. Here, we investigated the in vitro binding interactions of the subunits at the stalk region and measured their specific affinities. Surface plasmon resonance experiments revealed that the subunit C1 binds the E1G1 heterodimer with both high and low affinities (2.8 nM and 1.9 µM, respectively). In addition, an E1G1-H complex can be formed with high affinity (48 nM), whereas affinities of other subunit pairs appeared to be low (∼0.21-3.0 µM). The putative ternary complex of C1-H-E1G1 was not much strong on co-incubation of these subunits, indicating that the two strong complexes of C1-E1G1 and H-E1G1 in cooperation with many other weak interactions may be sufficiently strong enough to withstand the torque of rotation during catalysis. We observed a partially stable quaternary complex (consisting of E1G1, C1, a1(NT), and H subunits) resulting from discrete peripheral subunit interactions stabilizing the complex through their intrinsic affinities. No binding was observed in the absence of E1G1 (using only H, C1, and a1(NT)); therefore, it is likely that, in vivo, the E1G1 heterodimer has a significant role in the initiation of subunit assembly. Multiple interactions of variable affinity in the stalk region may be important to the mechanism of reversible dissociation of the intact V-ATPase.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/metabolismo , Biofisica , Cromatografía en Gel , Humanos , Electroforesis en Gel de Poliacrilamida Nativa , Unión Proteica , Resonancia por Plasmón de Superficie , ATPasas de Translocación de Protón Vacuolares/química
15.
Nature ; 493(7434): 703-7, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23334411

RESUMEN

In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.


Asunto(s)
Enterococcus/enzimología , Modelos Moleculares , ATPasas de Translocación de Protón Vacuolares/química , Sitios de Unión , Cristalización , Enterococcus/genética , Mutación , Nucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Rotación , ATPasas de Translocación de Protón Vacuolares/genética
16.
Springerplus ; 2: 689, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24404436

RESUMEN

Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV(476-7)AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity.

17.
Proc Natl Acad Sci U S A ; 108(50): 19955-60, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22114184

RESUMEN

V-ATPases function as ATP-dependent ion pumps in various membrane systems of living organisms. ATP hydrolysis causes rotation of the central rotor complex, which is composed of the central axis D subunit and a membrane c ring that are connected by F and d subunits. Here we determined the crystal structure of the DF complex of the prokaryotic V-ATPase of Enterococcus hirae at 2.0-Å resolution. The structure of the D subunit comprised a long left-handed coiled coil with a unique short ß-hairpin region that is effective in stimulating the ATPase activity of V(1)-ATPase by twofold. The F subunit is bound to the middle portion of the D subunit. The C-terminal helix of the F subunit, which was believed to function as a regulatory region by extending into the catalytic A(3)B(3) complex, contributes to tight binding to the D subunit by forming a three-helix bundle. Both D and F subunits are necessary to bind the d subunit that links to the c ring. From these findings, we modeled the entire rotor complex (DFdc ring) of V-ATPase.


Asunto(s)
Enterococcus/enzimología , Células Procariotas/enzimología , Subunidades de Proteína/química , ATPasas de Translocación de Protón Vacuolares/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Electricidad Estática , Homología Estructural de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo
18.
Structure ; 19(10): 1496-508, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22000517

RESUMEN

Adenomatous polyposis coli (APC) is a tumor suppressor protein commonly mutated in colorectal tumors. APC plays important roles in Wnt signaling and other cellular processes. Here, we present the crystal structure of the armadillo repeat (Arm) domain of APC, which facilitates the binding of APC to various proteins. APC-Arm forms a superhelix with a positively charged groove. We also determined the structure of the complex of APC-Arm with the tyrosine-rich (YY) domain of the Src-associated in mitosis, 68 kDa protein (Sam68), which regulates TCF-1 alternative splicing. Sam68-YY forms numerous interactions with the residues on the groove and is thereby fixed in a bent conformation. We assessed the effects of mutations and phosphorylation on complex formation between APC-Arm and Sam68-YY. Structural comparisons revealed different modes of ligand recognition between the Arm domains of APC and other Arm-containing proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteína de la Poliposis Adenomatosa del Colon/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Proteínas de Unión al ARN/química , Empalme Alternativo , Clonación Molecular , Simulación por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mutación Missense , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Selenometionina/química , Difracción de Rayos X
19.
Protein Expr Purif ; 78(2): 181-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21356312

RESUMEN

The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase.


Asunto(s)
Proteínas Recombinantes/química , ATPasas de Translocación de Protón Vacuolares/química , Secuencia de Aminoácidos , Sistema Libre de Células , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Datos de Secuencia Molecular , Isoformas de Proteínas , Multimerización de Proteína , Subunidades de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de Proteína , ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación
20.
Biochem Biophys Res Commun ; 390(3): 698-702, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19833097

RESUMEN

Enterococcus hirae vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V(1); NtpA(3)-B(3)-D-G) and an integral membrane domain (V(0); NtpI-K(10)) connected by a central and peripheral stalk(s) (NtpC and NtpE-F). Here we examined the nucleotide binding of NtpA monomer, NtpB monomer or NtpD-G heterodimer purified by using Escherichia coli expression system in vivo or in vitro, and the reconstitution of the V(1) portion with these polypeptides. The affinity of nucleotide binding to NtpA was 6.6 microM for ADP or 3.1 microM for ATP, while NtpB or NtpD-G did not show any binding. The NtpA and NtpB monomers assembled into NtpA(3)-B(3) heterohexamer in nucleotide binding-dependent manner. NtpD-G bound NtpA(3)-B(3) forming V(1) (NtpA(3)-B(3)-D-G) complex independent of nucleotides. The V(1) formation from individual NtpA and NtpB monomers with NtpD-G heterodimer was absolutely dependent on nucleotides. The ATPase activity of reconstituted V(1) complex was as high as that of native V(1)-ATPase purified from the V(0)V(1) complex by EDTA treatment of cell membrane. This in vitro reconstitution system of E. hirae V(1) complex will be valuable for characterizing the subunit-subunit interactions and assembly mechanism of the V(1)-ATPase complex.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Nucleótidos/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Dominio Catalítico , Escherichia coli/química , Escherichia coli/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA