RESUMEN
Treatment of relapsed or refractory diffuse large B-cell lymphoma is difficult. The de novo diffuse large B-cell lymphoma has better prognosis than the transformed diffuse large B-cell lymphoma. The response of CHOP or a similar regimen has an important role in determining response to salvage therapy, in relapse or refractory diffuse large B-cell lymphoma patients. Patients who are non-responder to initial treatment have a very poor chance of responding to therapy for relapse. This was a small scale observational study and was conducted from January 2017 to December 2020 in National Institute of Cancer Research and Hospital, Bangladesh. A total of 34 patients with relapsed or refractory diffuse large B-cell lymphoma were identified at hematology department in National Institute of Cancer Research and Hospital, 28 of them were treated with ICE chemotherapy and 6 with R-ICE chemotherapy as second line regimen. Overall response rate to 2nd line chemotherapy was 64.8%, with 32.4% (11 patients) complete remission and 32.4% (11 patients) partial remission. Median overall survival to second line regimen was 10 months, corresponding to a 4 year overall survival of 32.4% and a 4 year progression free survival was 17.6%. Patient with stable disease/progressive disease median overall survival was 7 months compared with 15 months for complete remission and 9 months for partial remission (p<0.001). Median overall survival was significantly better in patients with international prognostic index 0-2 compared in those with international prognostic index >2 (p=0.010). However improvement of salvage efficacy is an urgent need with new drugs. Further studies are necessary to determine whether this regimen will improve outcomes of relapsed or refractory diffuse large B-cell lymphoma patients.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatino , Etopósido , Ifosfamida , Linfoma de Células B Grandes Difuso , Rituximab , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Etopósido/administración & dosificación , Etopósido/uso terapéutico , Masculino , Femenino , Ifosfamida/administración & dosificación , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Rituximab/uso terapéutico , Rituximab/administración & dosificación , Adulto , Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , AncianoRESUMEN
Elevated atmospheric heat is considered as one of the bottlenecks for global wheat production. Screening potential wheat genotypes against heat stress and selecting some suitable indicators to assist in understanding thermotolerance could be crucial for sustaining wheat cultivation. Accordingly, 80 diverse bread wheat genotypes were evaluated in controlled lab condition by imposing a week-long heat stress (35/25 °C D/N) at the seedling stage. The response of heat stress was evaluated using multivariate analysis techniques on 20 morpho-physiological traits. Results showed significant variations in the studied traits due to the imposition of heat stress. Eleven seedling traits that contributed significantly to the genotypic variability were identified using principal component analysis (PCA). A substantial correlation between most of the selected seedling attributes was observed. Hierarchical cluster analysis identified three distinct clusters among the tested wheat genotypes. Cluster 1, consisting of 33 genotypes, exhibited the highest tolerance to heat stress, followed by Cluster 2 (18 genotypes) with moderate tolerance and Cluster 3 (29 genotypes) showing susceptibility. Linear discriminant analysis (LDA) approved that nearly 93 % of the wheat genotypes were appropriately ascribed to each cluster. The squared distance analysis confirmed the distinct nature of the clusters. Using multi-trait genotype-ideotype distance index (MGIDI), all 12 identified tolerant genotypes (BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) originated from Cluster 1. Selection gain in MGIDI analysis, broad-sense heritability, and multiple linear regression analysis together identified shoot and root dry and fresh weights, chlorophyll contents (a and total), shoot tissue water content, root-shoot dry weight ratio, and efficiency of photosystem II (PS II) as the most vital discriminatory factors explaining heat stress tolerance of 80 wheat genotypes. The identified genotypes with superior thermotolerance would offer resourceful genetic tools for breeders to improve wheat yield in warmer regions. The traits found to have greater contribution in explaining heat stress tolerance will be equally important in prioritizing future research endeavors.
RESUMEN
Bioherbicides might be used to manage weeds as opposed to synthetic chemical herbicides, reducing environmental risks and advancing sustainable agriculture in the meantime. Bioherbicides employ different mechanisms of action to control weeds. Microbial bioherbicides may infect and damage weed plants, disrupt their growth, or produce compounds inhibiting weed development. Plant-derived bioherbicides often target specific biochemical processes crucial for weed survival. It can be applied through conventional spraying equipment, seed treatments, or soil incorporation. Bioherbicide development faces several challenges. One major hurdle is the complex diversity of weed species across different regions, requiring tailored bioherbicide solutions. The regulatory approvals for bioherbicides can be lengthy and costly, hindering widespread adoption. Scaling up production processes and ensuring product stability also pose challenges. By reducing reliance on chemical herbicides, bioherbicides can mitigate environmental pollution, protect non-target organisms, and promote sustainable agricultural practices. The development of locally adapted bioherbicides and strategic collaborations between researchers, industries, and policymakers could further enhance their prospects in a particular country. In addition, the knowledge gaps need to be addressed prior to adopting bioherbicides in agriculture. These review intended to explore the existing state of knowledge about the categories of bioherbicides, their formulation procedure, application approaches and mode of action to control weed. The bioherbicides that are currently on the market, their effects on weed physiology, and possible factors affecting their efficacy are all included in this review. Moreover, this review offers a perspective on existing challenges and future opportunities for adopting the bioherbicides in sustainable and eco-friendly agriculture.
RESUMEN
The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local "Dholkolmi" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.
RESUMEN
The present study elucidates the role of annealing with electric field on lamellar crystalline structure and molecular orientation of polymer chains in ferroelectric copolymer (P(VDF-TrFE)) and ferroelectric terpolymer (P(VDF-TrFE-CFE)) spin-coated thin films. The ferroelectric polymer thin films annealed under an electric field support the growth of nanostructure with an "edge-on" lamellar crystalline structure having in-plane molecular chain orientation. The poled P(VDF-TrFE) thin films have higher remnant polarization (Pr) ≈6.2 µC cm-2 and saturation polarization (Ps) ≈8.2 µC cm-2 at an applied electric field of 250 MV/m compared to unpoled thin films having Pr ≈4.7 and Ps ≈6.2 µC cm-2. Also, poled P(VDF-TrFE) thin films show lower coercive field (Ec) ≈94 MV/m compared to an unpoled thin film having Ec ≈105 MV/m. Similarly, poled PVDF-TrFE-CFE thin film shows better ferroelectric properties having Pr ≈0.4 and Ps ≈5.7 µC cm-2 at an applied electric field of 200 MV m-1 compared to unpoled thin films having Pr ≈0.4 and Ps ≈4.1 µC cm-2. The storage energy efficiency of unpoled and poled P(VDF-TrFE-CFE) thin films is measured to be ≈75% and 80%. Annealing of ferroelectric P(VDF-TrFE) polymer thin films under an electric field demonstrates improved ferroelectric and electroactive properties.
RESUMEN
Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks. To address this, nanotechnology emerges as a promising avenue, leveraging the antimicrobial properties of nanoparticles like silver nanoparticles (AgNPs). This study explored the green synthesis of AgNPs using Ipomoea carnea leaf extract and silver nitrate (AgNO3), and also examined their efficacy against sheath blight disease in rice. The biosynthesized AgNPs were characterized through various analytical techniques such as UV-vis spectrophotometer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Particle size analyzer, Zeta potential, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM) for confirming their successful production and crystalline nature of nanoparticles. The results of UV-visible spectrophotometers revealed an absorption peak ranging from 421 to 434 nm, validated the synthesis of AgNPs in the solution. XRD, DLS, and TEM estimated AgNPs sizes were ~45 nm, 66.2nm, and 46.38 to 73.81 nm, respectively. SEM and FESEM demonstrated that the synthesized AgNPs were spherical in shape. In vitro assays demonstrated the significant inhibitory effects of AgNPs on mycelial growth of Rhizoctonia solani, particularly at higher concentrations and pH levels. Further greenhouse and field experiments validated the antifungal efficacy of AgNPs against sheath blight disease in rice, exhibiting comparable effectiveness to commercial fungicides. The findings highlight the potential of AgNPs as a sustainable and effective alternative for managing rice sheath blight disease, offering a safer solution amidst environmental concerns associated with conventional fungicides.
Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Oryza , Enfermedades de las Plantas , Rhizoctonia , Plata , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Difracción de Rayos X , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fungicidas Industriales/farmacología , Fungicidas Industriales/químicaRESUMEN
The present study aimed to identify and characterize new sources of salt tolerance among 94 rice varieties from varied geographic origins. The genotypes were divided into five groups based on their morphological characteristics at both vegetative and reproductive stages using salinity scores from the Standard Evaluation System (SES). The experiment was designed as per CRD (Completely Randomized Design) with 2 sets of salinity treatments for 8 dS/meter and 12 dS/meter, respectively compared with one non-salinized control set. Using a Soil Plant Analysis Development (SPAD) meter, assessments of the apparent chlorophyll content (greenness) of the genotypes were done to comprehend the mechanism underlying their salt tolerance. To evaluate molecular genetic diversity, a panel of 1 K RiCA SNP markers was employed. Utilizing TASSEL 5.0 software, 598 filtered SNPs were used for molecular analysis. Whole-genome association studies (GWAS) were also used to investigate panicle number per plant (pn, tiller number per plant (till), SPAD value (spad), sterility (percent) (str), plant height (ph) and panicle length (pl. It is noteworthy that these characteristics oversee conveying the visible signs of salt damage in rice. Based on genotype data, diversity analysis divided the germplasm groups into four distinct clusters (I, II, III and IV). For the traits studied, thirteen significant marker-trait associations were discovered. According to the phenotypic screening, seven germplasm genotypes namely Koijuri, Asha, Kajal, Kaliboro, Hanumanjata, Akundi and Dular, are highly tolerant to salinity stress. The greenness of these genotypes was found to be more stable over time, indicating that these genotypes are more resistant to stress. Regarding their tolerance levels, the GWAS analysis produced comparable results, supporting that salinity-tolerant genotypes having minor alleles in significant SNP positions showed more greenness during the stress period. The Manhattan plot demonstrated that at the designated significant SNP position, the highly tolerant genotypes shared common alleles. These genotypes could therefore be seen as important genomic resources for accelerating the development and release of rice varieties that are tolerant to salinity.
Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/genética , Estudio de Asociación del Genoma Completo , Genotipo , Amantadina , SalinidadRESUMEN
To examine the impact of mixture ratio and temporal deployment of fine and coarse grain cultivars on rice productivity and profitability, two experiments were carried out at Bangladesh Agricultural University. In both investigations, two monsoon rice cultivars viz., Binadhan-13 (a tall, late-maturing, fine-grained) and Dhani Gold (a semi-dwarf, mid-maturing, coarse-grained) were utilized. In the 1st experiment, rice cultivars were planted in different mixture ratios viz., sole Binadhan-13, sole Dhani Gold, 1:1, 2:3, 3:2, 2:4 and 4:2 ratio of Binadhan-13 to Dhani Gold. The second study included the introducing time of Dhani Gold viz., seven days before or after or same day of Binadhan-13, sole Binadhan-13 and sole Dhani Gold. Three replications of the randomized complete block design were used for both trials. In the first experiment, both cultivars produced more when grown in mixtures as opposed to solitary cultures. Even though Dhani Gold's sole culture had the greatest yield, it was statistically equivalent to combined yields when Binadhan-13 and Dhani Gold were grown together in mixtures at 2:1, 3:1, or 4:1 ratios. The maximum net return and benefit cost ratio (BCR) were achieved when Binadhan-13 and Dhani Gold were planted in mixture following a 4:2 ratio as opposed to when Binadhan-13 was grown solely. In the second experiment, a sole cultivar generated less yield than cultivars that were transplanted on the same day, before, and after another cultivar. Cultivation of sole Binadhan-13 produced the lowest net return and minimum BCR (1.37), while the highest net return and BCR (1.81) was recorded when Dhani Gold was planted seven days before Binadhan-13 in mixture. A clear economic advantage of mixed culture with temporal deployment over the sole culture of either cultivar was evident. Therefore, transplanting Dhani Gold in a 1:1 ratio seven days before Binadhan-13 may be advised for greater output and economic return.
RESUMEN
Millets are small-grained nutritious minor cereal crops that are resistant to different abiotic stresses resulting from climate change. Despite their many benefits, millets have received limited attention in agricultural research, policies, and markets. Considering the importance of millets, recently the government many tropical countries including India and Bangladesh give more emphasis to millets cultivation and improvement. Moreover, Food and Agricultural Organization of the United Nations (FAO) declared 2023 to be the "International Years of Millets". In these connections, a details and updated review of the pros and cons of millets cultivation and its improvement in this region warrant due attention. The review therefore, examines the potential and main barriers to the adoption and promotion of millet cultivation in this region. These include limited research and development efforts, inadequate infrastructure and inputs, weak market linkages and demand, and insufficient awareness and knowledge about millets' nutritional and environmental benefits. This review also highlighted the prospects and strategies for scaling up millet cultivation in this region especially in Bangladesh. These include increasing public and private investment in research and extension services, strengthening farmers' organizations and market linkages, promoting millet-based value chains and products, and integrating millets into nation's food policy. The review concludes that millets might support equitable and sustainable agricultural growth, which would contribute to global food and nutritional security and could help attain the sustainable development goals (SDGs). However, achieving this potential will require concerted efforts from multiple stakeholders, including farmers, researchers and policymakers. The review emphasizes the need for a multi-disciplinary and multi-stakeholder approach that prioritizes innovation, inclusiveness, and sustainability. Lastly, the review highlights more investigation into the socioeconomic, environmental, and nutritional effects of millet production in this region with special emphasis on Bangladesh in order to support evidence-based policies and practices.
RESUMEN
Current evidence suggests that recent acute respiratory infections and seasonal influenza may precipitate acute myocardial infarction (AMI). This study examined the potential link between recent clinical respiratory illness (CRI) and influenza, and AMI in Bangladesh. Conducted during the 2018 influenza season at a Dhaka tertiary-level cardiovascular (CV) hospital, it included 150 AMI cases and two control groups: 44 hospitalized cardiac patients without AMI and 90 healthy individuals. Participants were matched by gender and age groups. The study focused on self-reported CRI and laboratory-confirmed influenza ascertained via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) within the preceding week, analyzed using multivariable logistic regression. Results showed that cases reported CRI, significantly more frequently than healthy controls (27.3% vs. 13.3%, adjusted odds ratio (aOR): 2.21; 95% confidence interval (CI): 1.05-4.06), although this was not significantly different from all controls (27.3% vs. 22.4%; aOR: 1.19; 95% CI: 0.65-2.18). Influenza rates were insignificantly higher among cases than controls. The study suggests that recent respiratory illnesses may precede AMI onset among Bangladeshi patients. Infection prevention and control practices, as well as the uptake of the influenza vaccine, may be advocated for patients at high risk of acute CV events.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infarto del Miocardio , Humanos , Gripe Humana/complicaciones , Gripe Humana/epidemiología , Gripe Humana/tratamiento farmacológico , Vacunas contra la Influenza/uso terapéutico , Estudios de Casos y Controles , Bangladesh/epidemiología , Infarto del Miocardio/epidemiología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológicoRESUMEN
Rice (Oryza sativa) is a major crop and a main food for a major part of the global population. Rice species have derived from divergent agro-climatic regions, and thus, the local germplasm has a large genetic diversity. This study investigated the relationship between phenotypic and genetic variabilities of yield and yield-associated traits in Aus rice to identify short-duration, high-yielding genotypes. Targeting this issue, a field experiment was carried out to evaluate the performance of 51 Aus rice genotypes, including 50 accessions in F5 generation and one short-duration check variety BINAdhan-19. The genotypes exhibited a large and significant variation in yield and its associated traits, as evidenced by a wide range of their coefficient of variance. The investigated traits, including days to maturity (DM), plant height (PH), panicle length (PL) and 1000-grain weight (TW) exhibited a greater genotypic coefficient of variation than the environmental coefficient of variation. In addition, the high broad-sense heritability of DM, PH, PL and TW traits suggests that the genetic factors significantly influence the observed variations in these traits among the F5 Aus rice accessions. This study also revealed that the grain yield per hill (GY) displayed a significant positive correlation with PL, number of filled grains per panicle (FG) and TW at both genotype and phenotype levels. According to the hierarchical and K-means cluster analyses, the accessions BU-R-ACC-02, BU-R-ACC-08 and R2-36-3-1-1 have shorter DM and relatively higher GY than other Aus rice accessions. These three accessions could be employed in the ongoing and future breeding programs for the improvement of short-duration and high-yielding rice cultivars.
RESUMEN
Background and Aim: The emergence of antimicrobial-resistant bacteria, such as Escherichia coli in milk, is a serious public health concern as milk is considered a complete food and an important part of daily human diet worldwide, including in Bangladesh. However, there have been no reports on the molecular characterization and antibiotic resistance profile of extended-spectrum beta-lactamase (ESBL)-producing E. coli from milk of healthy cows in Bangladesh. Therefore, this study aimed to detect and characterize ESBL-producing E. coli (ESBL-Ec) in milk samples from healthy cows in smallholder dairy farms in Mymensingh district, Bangladesh, and assess the potential risk of consuming this milk. Materials and Methods: A total of 100 milk samples were collected from apparently healthy cows on smallholder dairy farms. Escherichia coli was isolated from the collected samples using standard methods. The detection of ESBL-Ec was performed phenotypically using cultural methods and genotypically by ESBL genetic determinants using multiplex polymerase chain reaction. Antimicrobial susceptibility testing of the ESBL-Ec isolates was performed using the disk diffusion method with 15 common antimicrobials. Results: In this study, out of the 100 samples tested, 70 (70%) were found to be positive for E. coli. Among these, 41 (58.6%) strains were identified as ESBL-producing, both phenotypically and genotypically, with the presence of blaCTX-M, blaTEM, and blaSHV individually or combined (blaCTX-M plus blaTEM plus blaSHV). The antibiogram of these ESBL-positive isolates revealed high resistance against commonly used antibiotics, such as ampicillin, cefotaxime, and gentamicin (100%), azithromycin (88%), oxytetracycline (27%), nalidixic acid, cotrimoxazole/trimethoprim (24%), and streptomycin (22%). In addition, one isolate showed resistance to 4th generation of cephalosporin (cefepime). Most importantly, extensive multidrug resistance was found in many ESBL-Ec isolates. However, the isolates were highly sensitive to drugs such as ceftriaxone (100%) and imipenem (100%). This is the first study to detect ESBL-Ec in raw milk from healthy cows on smallholder dairy farms in Bangladesh. Conclusion: More than 58% of the E. coli isolated from raw milk of healthy cows tested positive for ESBL production and showed resistance to most commonly used antimicrobials which may be alarming for human health. A limitation of our study is that we had a small size of sample collected from one district in Bangladesh. Therefore, a larger sample size covering a wider geographic area, and using multi-locus sequence typing and whole genome sequencing could provide a more comprehensive understanding of the prevalence and characteristics of ESBL-Ec in Bangladesh.
RESUMEN
In the present study, the intermolecular interactions between a water-insoluble phospholipid (DOPC) and water-soluble protein (myoglobin) and the interaction among themselves were investigated at the air-water interface using the Langmuir and Langmuir-Blodgett techniques. The effects of changes in physicochemical factors, like pH and temperature, on these interactions were also examined. Surface pressure-molecular area (π-A) isotherms of the DOPC monolayer at the air-water interface, with and without myoglobin (Myo) revealed the evolution of various physical properties, such as elastic, thermodynamic, and hysteric properties, in response to changes in subphase pH and temperature. With the increment of subphase pH from 5 to 7 at a fixed temperature (20 °C), the DOPC isotherm expanded, and the in-plane elasticity (CS-1) decreased, but no significant presence of hysteresis was encountered in either of the pH values. On the other hand, a diminution of temperature (from 20 to 5 °C) leads to an expansion of monolayers yielding low elasticity and significant hysteresis. The incorporation of Myo molecules within the DOPC monolayer decreased the CS-1 value of the DOPC monolayer. Such a decrement in CS-1 was also encountered while increasing the pH and decreasing the temperature (T) of the subphase in the absence of Myo. Systematic expansion of DOPC isotherm and increased hysteric area with the increase in Myo proportion were observed and the atomic force microscopy (AFM) observations suggested a strong conjugation between Myo and DOPC in the mixed monolayer. The denaturation effect of Myo molecules was studied using AFM at different temperatures. Furthermore, the Myo molecules were found to be most surface active at pH = 7, which is very close to its isoelectric point. These observations come up with the interaction mechanism between biomolecules under dynamically varied conditions.
RESUMEN
The optical response, lithium doping, and charge transfer in three Sn-based existing M3SnC2 MAX phases with electron localization function (ELF) were investigated using density functional theory (DFT). Optical calculations show a slight optical anisotropy in the spectra of different optical parameters in some energy ranges of the incident photons. The peak height is mostly slightly higher for the polarization ⟨001⟩. The highest peak shifts toward higher energy when the M-element Ti is replaced by Zr and then by Hf. Optical conductivity, refractive index, extinction coefficient, and dielectric functions reveal the metallic nature of Ti3SnC2, Zr3SnC2, and Hf3SnC2. The plasma frequencies of these materials are very similar for two different polarizations and are 12.97, 13.56, and 14.46 eV, respectively. The formation energies of Li-doped Zr3SnC2 and Hf3SnC2 are considerably lower than those of their Li-doped 211 MAX phase counterparts Zr2SnC and Hf2SnC. Consistently, the formation energy of Li-doped Ti3SnC2 is lower than that of the corresponding 2D MXene Ti3C2, which is a promising photothermal material. The Bader charge is higher in magnitude than the Mulliken and Hirschfeld charges. The highest charge transfer occurs in Zr3SnC2 and the lowest charge transfer occurs in Ti3SnC2. ELF reveals that the bonds between carbon and metal ions are strongly localized, whereas in the case of Sn and metal ions, there is less localization which is interpreted as a weak bond.
RESUMEN
Early purchase prediction plays a vital role for an e-commerce website. It enables e-shoppers to enlist consumers for product suggestions, offer discount and for many other interventions. Several work has already been done using session log for analyzing customer behavior whether he performs a purchase on the product or not. In most cases, it is difficult to find out and make a list of customers and offer them discount when their session ends. In this paper, we propose a customer's purchase intention prediction model where e-shoppers can detect customer's purpose earlier. First, we apply feature selection technique to select best features. Then the extracted features are fed to train supervised learning models. Several classifiers like support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), decision tree (DT), and XGBoost classifiers have been applied along with oversampling method for balancing the dataset. The experiments were performed on a standard benchmark dataset. Experimental results show that XGBoost classifier with feature selection techniques and oversampling method has the significantly higher area under ROC curve (auROC) score and are under precision-recall curve (auPR) score which are 0.937 and 0.754 respectively. On the other hand accuracy achieved by XGBoost and Decision tree are significantly improved and they are 90.65% and 90.54% respectively. Overall performance of the gradient boosting method is significantly improved compared to other classifiers and state-of-the-art methods. In addition to this, a method for explainable analysis on the problem was outlined.
RESUMEN
A key and ecologically sound strategy for integrated weed management is the use of varieties of weed-competitive crops. Utilizing wheat cultivars that are weed-competitive can lessen weed pressure and inordinate herbicide usage in wheat fields by a substantial amount. To assess the weed suppressibility of Bangladeshi wheat varieties, a field test was carried out in 2018 throughout the winter season at the Agronomy Field Laboratory, Bangladesh Agricultural University, Bangladesh. Tests on a total of 18 selected Bangladeshi wheat cultivars were conducted in both "weedy" and "weed-free" environments. Additionally, weed monoculture plots (without wheat) were kept. The experiment was replicated three times using a randomized complete block design (RCBD). The results demonstrated that wheat varieties' weed interference and production capabilities differed greatly. BARI Gom 22 permitted the most weed growth (35 m-2), whereas BARI Gom 23 allowed the least (15 m-2) at 60 DAS among the wheat types under study. Grain yield ranged between 4.42 t ha-1 (BARI Gom 20) and 5.45 t ha-1 (BARI Gom 26) in weed-free settings, whereas it fluctuated from 2.48 t ha-1 (BARI Gom 21) to 3.93 t ha-1(BARI Gom 33) in weedy condition. The extent of the relative yield loss brought on by weeds ranged from 24 to 53%, with BARI Gom 33 suffering the least and Binagom-1 suffering the most. The weed competitive index varied from 0.48 to 1.47 for the examined wheat types. Among the cultivars, Binagom-1 had the lowest WCI and BARI Gom 29 had the highest. Although BARI Gom 33 was the best yielder in weedy condition and had the lowest relative yield loss, its interference against weed was moderate. Relative to the other varieties under consideration, comparatively BARI Gom 33 was the best in terms of yield and weed interference, but it is also advocated that breeders should continually focus on developing a variety that has both excellent producing potential and robust weed suppression.
RESUMEN
In this article, ab initio calculations of unexplored Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] were performed wherein Ti2PB2 along with its 211 boride phase Ti2PB was predicted for the first time. The stability was confirmed by calculating the formation energy, phonon dispersion curve, and elastic stiffness constants. The obtained elastic constants, elastic moduli, and Vickers hardness values of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] were found to be significantly larger than those of their counterparts 211 borides and carbides. The studied compounds are brittle, like most MAX and MAB phases. The electronic band structure and density of states revealed the metallic nature of the titled borides. Several thermal parameters were explored, certifying the suitability of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] to be used as efficient thermal barrier coating materials. The response of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] to the incident photon was studied by computing the dielectric constant (real and imaginary parts), refractive index, absorption coefficient, photoconductivity, reflectivity, and energy loss function. In this work, we have explored the physical basis of the improved thermomechanical properties of 212 MAX phase borides compared to their existing carbide and boride counterparts.
RESUMEN
The climate science and applications communities need a broad and demand-driven concept to assess physical climate conditions that are relevant for impacts on human and natural systems. Here, we augment the description of the "climatic impact-driver" (CID) approach adopted in the Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report. CIDs are broadly defined as "physical climate system conditions (e.g., means, events, and extremes) that affect an element of society or ecosystems. Depending on system tolerance, CIDs and their changes can be detrimental, beneficial, neutral, or a mixture of each across interacting system elements and regions." We give background information on the IPCC Report process that led to the development of the 7 CID types (heat and cold, wet and dry, wind, snow and ice, coastal, open ocean, and other) and 33 distinct CID categories, each of which may be evaluated using a variety of CID indices. This inventory of CIDs was co-developed with WGII to provide a useful collaboration point between physical climate scientists and impacts/risk experts to assess the specific climatic phenomena driving sectoral responses and identify relevant CID indices within each sector. The CID Framework ensures that a comprehensive set of climatic conditions informs adaptation planning and risk management and may also help prioritize improvements in modeling sectoral dynamics that depend on climatic conditions. CIDs contribute to climate services by increasing coherence and neutrality when identifying and communicating relevant findings from physical climate research to risk assessment and planning activities.
RESUMEN
LaIr3Ga2 is a kagome superconductor with a superconducting temperature (Tc) of 5.16 K. Here, we present the physical properties of the LaIr3Ga2 kagome superconductor computed via the DFT method wherein six different exchange-correlation functionals were used. The lattice parameters obtained using different functionals are reasonable, with a slight variation compared to experimental values. The bonding nature was explored. The elastic constants (Cij), moduli (B, G, Y), and Vickers hardness (Hv) were computed to disclose the mechanical behavior. The Hv values were estimated to be 2.56-3.16 GPa using various exchange-correlation functionals, indicating the softness of the kagome material. The Pugh ratio, Poisson's ratio, and Cauchy pressure revealed the ductile nature. In addition, mechanical stability was ensured based on the estimated elastic constants. The anisotropic mechanical behavior was confirmed via different anisotropic indices. The Debye temperature (ΘD), melting temperature (Tm), and minimum thermal conductivity (kmin) were calculated to characterize the thermal properties and predict the potential of LaIr3Ga2 as a thermal barrier coating material. The electronic density of states was investigated in detail. The McMillan equation was used to estimate Tc, and the electron-phonon coupling constant (λ) was calculated to explore the superconducting nature. The important optical constants were also calculated to explore its possible optoelectronic applications. The values of reflectivity in the IR-visible region are about 62% to 80%, indicating that the compound under study is suitable as a coating to reduce solar heating. The obtained parameters were compared with previously reported parameters, where available.
RESUMEN
The scarcity of useable water is severe and increasing in several regions of the Middle East, Central and Southern Asia, and Northern Africa. However, the earth's atmosphere contains 37.5 million billion gallons of water in the invisible vapor phase with fast replenishment. The United Nations Convention to Combat Desertification reports that by 2025 about 2.4 billion people will suffer from a lack of access to safe drinking water. Extensive research has been conducted during the last two decades to develop nature-inspired nanotechnology-based atmospheric water-harvesting technology (atmospheric water generator, AWG) to provide clean water to humanity. However, the performance of this technology is humidity sensitive, particularly when the relative humidity (RH) is high (>~80% RH). Moreover, the fundamental design principle of the materials system for harvesting atmospheric water is mostly unknown. In this work, we present a promising technology for solar energy-driven clean water production in arid and semi-arid regions and remote communities. A polymeric electrospun hybrid hydrogel consisting of deliquescent salt (CaCl2) and nanomaterials was fabricated, and the atmospheric water vapor harvesting capacity was measured. The harvested water was easily released from the hydrogel under regular sunlight via the photothermal effect. The experimental tests of this hybrid hydrogel (PAN/AM/graphene/CaCl2) demonstrated the feasibility of around 1.04 L of freshwater production per kilogram of the hydrogel (RH 60%). The synergistic effect enabled by photothermal materials and deliquescent salt in the hydrogel network architecture presents controllable interaction with water molecules, simultaneously realizing efficient water harvesting. This technology requires no additional input of energy. When considering the global environmental challenges and exploring the available technologies, a sustainable clean water supply for households, industry, and agriculture can be achieved from the air using this economical and practical technology.