RESUMEN
Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. Assessment of such changes is particularly important for Southeast Asia (SEA) - home to global largest ecological diversity. Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020-2059) and far (2060-2099) periods were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged from - 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce over most of SEA (ranging from - 1.1 to - 2.0 °C), while isothermality is likely to decrease from - 1.1 to - 4.6%. A decrease in isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual temperature range in the future.
RESUMEN
Assessment of the thermal bioclimatic environmental changes is important to understand ongoing climate change implications on agriculture, ecology, and human health. This is particularly important for the climatologically diverse transboundary Amy Darya River basin, a major source of water and livelihood for millions in Central Asia. However, the absence of longer period observed temperature data is a major obstacle for such analysis. This study employed a novel approach by integrating compromise programming and multicriteria group decision-making methods to evaluate the efficiency of four global gridded temperature datasets based on observation data at 44 stations. The performance of the proposed method was evaluated by comparing the results obtained using symmetrical uncertainty, a machine learning similarity assessment method. The most reliable gridded data was used to assess the spatial distribution of global warming-induced unidirectional trends in thermal bioclimatic indicators (TBI) using a modified Mann-Kendall test. Ranking of the products revealed Climate Prediction Center (CPC) temperature as most efficient in reconstruction observed temperature, followed by TerraClimate and Climate Research Unit. The ranking of the product was consistent with that obtained using SU. Assessment of TBI trends using CPC data revealed an increase in the Tmin in the coldest month over the whole basin at a rate of 0.03-0.08 °C per decade, except in the east. Besides, an increase in diurnal temperature range and isothermally increased in the east up to 0.2 °C and 0.6% per decade, respectively. The results revealed negative implications of thermal bioclimatic change on water, ecology, and public health in the eastern mountainous region and positive impacts on vegetation in the west and northwest. Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-022-02172-8.