Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 332: 121907, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431393

RESUMEN

Low-concentration alkali treatments at low temperatures facilitate the crystal transition of cellulose I to II. However, the transition mechanism remains unclear. Hence, in this study, we traced the transition using in situ solid-state 13C CP/MAS NMR, WAXS, and 23Na NMR relaxation measurements. In situ solid-state 13C CP/MAS NMR and WAXS measurements revealed that soaking cellulose in NaOH at low temperatures disrupts the intramolecular hydrogen bonds and lowers the crystallinity of cellulose. The dynamics of Na ions (NaOH) play a crucial role in causing these phenomena. 23Na NMR relaxation measurements indicated that the Na-ion correlation time becomes longer during the crystal transition. This transition requires the penetration of Na ions (NaOH) into the cellulose crystal and a reduction in Na-ion mobility, which occurs at low temperatures or high NaOH concentrations. The interactions between cellulose and NaOH disrupt intramolecular hydrogen bonds, inducing a conformational change in the cellulose molecules into a more stable arrangement. This weakens the hydrophobic interactions of cellulose, and facilitates the penetration of NaOH and water into the crystal, leading to the formation of alkali cellulose. Our findings suggest that a strategy to control NaOH dynamics could lead to the discovery of a novel preparation method for cellulose II.

2.
ACS Macro Lett ; : 252-259, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334272

RESUMEN

Unnatural polysaccharide analogs and their biological activities and material properties have attracted considerable research interest. However, these efforts often encounter challenges, especially those related to synthetic complexity and scalability. Here, we report the chemical synthesis of unnatural (1→6)-polysaccharides using levoglucosenone (LGO) and dihydrolevoglucosenone (Cyrene), which are derived from cellulose. Using a versatile monomer synthesis from LGO and Cyrene and cationic ring-opening polymerization, (1→6)-polysaccharides with various tailored substituent patterns are obtained. Additionally, environmentally benign and easy-to-handle organic Brønsted acid catalysts are investigated. This study demonstrates well-controlled first-order polymerization kinetics for the reactive (1S,5R)-6,8-dioxabicyclo[3,2,1]octane (DBO) monomer. The synthesized (1→6)-polysaccharides exhibit high thermal stability and form amorphous solids under ambient conditions, which could be processed into highly transparent self-standing films. Additionally, these polymers exhibit excellent closed-loop chemical recyclability. This study provides an important approach to explore the chemical spaces of unnatural polysaccharides and contributes to the development of sustainable polymer materials from abundant biomass resources.

3.
Carbohydr Polym ; 322: 121357, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839833

RESUMEN

Aureobasidium pullulans ß-(1 â†’ 3, 1 â†’ 6)-glucan (APG) has a high degree of ß-(1 â†’ 6)-glucosyl branching and a regular triple helical structure similar to that of schizophyllan. In this study, APG was carboxymethylated to different degrees of substitution (DS = 0.51, 1.0, and 2.0, denoted CMAPG 1-3, respectively) using a heterogeneous reaction. With increasing DS, the triple-helix structure drastically decreased and converted to a random coil structure in CMAPG 3. Further, aqueous solutions of CMAPG changed from pseudoplastic fluids to perfect Newtonian liquids with increasing DS, indicating that the intra- and intermolecular hydrogen bonds had been cleaved by the substituents to form a random coil structure. In addition, APG and CMAPG solutions exhibited scavenging ability against hydroxyl, organic, and sulfate radicals. It was also found that the carboxymethylation of APG drastically enhanced the organic radical scavenging ability. On the basis of the relationship between the DS and radical scavenging ability of the CMAPG samples, we believe hydroxyl and organic radicals were preferably scavenged by the donation of hydrogen atoms from the glucose rings and the methylene moieties of the carboxymethyl groups, respectively. Considering the obtained results, CMAPG and APG are expected to have applications in pharmaceuticals, functional foods, and cosmetics as antioxidant polysaccharides.


Asunto(s)
Sizofirano , beta-Glucanos , Glucanos/química , Antioxidantes/farmacología , Polisacáridos/química , beta-Glucanos/química
4.
Carbohydr Polym ; 319: 121185, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567719

RESUMEN

Isomaltomegalosaccharides with α-(1 â†’ 4) and α-(1 â†’ 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 â†’ 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 â†’ 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 â†’ 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 â†’ 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.

5.
Angew Chem Int Ed Engl ; 62(35): e202304493, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37458573

RESUMEN

Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10-60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.

6.
Carbohydr Polym ; 316: 120976, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321706

RESUMEN

Thermoplastic elastomers (TPEs) have long been used in a wide range of industries. However, most existing TPEs are petroleum-derived polymers. To realize environmentally benign alternatives to conventional TPEs, cellulose acetate is a promising TPE hard segment because of its sufficient mechanical properties, availability from renewable sources, and biodegradability in natural environments. Because the degree of substitution (DS) of cellulose acetate governs a range of physical properties, it is a useful parameter for designing novel cellulose acetate-based TPEs. In this study, we synthesized cellulose acetate-based ABA-type triblock copolymers (AcCelx-b-PDL-b-AcCelx) containing a celloologosaccharide acetate hard A segment (AcCelx, where x is the DS; x = 3.0, 2.6, and 2.3) and a poly(δ-decanolactone) (PDL) soft B segment. Small-angle X-ray scattering showed that decreasing the DS of AcCelx-b-PDL-b-AcCelx resulted in the formation of a more ordered microphase-separated structure. Owing to the microphase separation of the hard cellulosic and soft PDL segments, all the AcCelx-b-PDL-b-AcCelx samples exhibited elastomer-like properties. Moreover, the decrease in DS improved toughness and suppressed stress relaxation. Furthermore, preliminary biodegradation tests in an aqueous environment revealed that the decrease in DS endowed AcCelx-b-PDL-b-AcCelx with greater biodegradability potential. This work demonstrates the usefulness of cellulose acetate-based TPEs as next-generation sustainable materials.


Asunto(s)
Elastómeros , Elastómeros/química , Temperatura
7.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242043

RESUMEN

Recently, experimental investigations of a class of temperature-responsive polymers tethered to oligooxyethylene side chains terminated with alkyl groups have been conducted. In this study, aqueous solutions of poly(glycidyl ether)s (PGE) with varying numbers of oxyethylene units, poly(methyl(oligooxyethylene)n glycidyl ether) (poly(Me(EO)nGE)), and poly(ethyl(oligooxyethylene)n glycidyl ether) (poly(Et(EO)nGE) (n = 0, 1, and 2) were investigated by all-atom molecular dynamics simulations, focusing on the thermal responses of their chain extensions, the recombination of intrapolymer and polymer-water hydrogen bonds, and water-solvation shells around the alkyl groups. No clear relationship was established between the phase-transition temperature and the polymer-chain extensions unlike the case for the coil-globule transition of poly(N-isopropylacrylamide). However, the temperature response of the first water-solvation shell around the alkyl group exhibited a notable correlation with the phase-transition temperature. In addition, the temperature at which the hydrophobic hydration shell strength around the terminal alkyl group equals the bulk water density (TCRP) was slightly lower than the cloud point temperature (TCLP) for the methyl-terminated poly(Me(EO)nGE) and slightly higher for the ethyl-terminated poly(Et(EO)nGE). It was concluded that the polymer-chain fluctuation affects the relationship between TCRP and TCLP.

8.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771966

RESUMEN

The redox behaviors of macrocyclic molecules with an entirely π-conjugated system are of interest due to their unique optical, electronic, and magnetic properties. In this study, defect-free cyclic P3HT with a degree of polymerization (DPn) from 14 to 43 was synthesized based on our previously established method, and its unique redox behaviors arising from the cyclic topology were investigated. Cyclic voltammetry (CV) showed that the HOMO level of cyclic P3HT decreases from -4.86 eV (14 mer) to -4.89 eV (43 mer), in contrast to the linear counterparts increasing from -4.94 eV (14 mer) to -4.91 eV (43 mer). During the CV measurement, linear P3HT suffered from electro-oxidation at the chain ends, while cyclic P3HT was stable. ESR and UV-Vis-NIR spectroscopy suggested that cyclic P3HT has stronger dicationic properties due to the interactions between the polarons. On the other hand, linear P3HT showed characteristics of polaron pairs with multiple isolated polarons. Moreover, the dicationic properties of cyclic P3HT were more pronounced for the smaller macrocycles.

9.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365529

RESUMEN

Silver nanoparticles (AgNPs) are used in a wide range of applications, and the size control and stability of the nanoparticles are crucial aspects in their applications. In the present study, cyclized poly(ethylene glycol) (c-PEG) with various molecular weights, along with linear PEG with hydroxy chain ends (HO-PEG-OH) and methoxy chain ends (MeO-PEG-OMe) were applied for the Tollens' synthesis of AgNPs. The particle size was significantly affected by the topology and end groups of PEG. For example, the size determined by TEM was 40 ± 7 nm for HO-PEG5k-OH, 21 ± 4 nm for c-PEG5k, and 48 ± 9 nm for MeO-PEG5k-OMe when the molar ratio of PEG to AgNO3 (ω) was 44. The stability of AgNPs was also drastically improved by cyclization; the relative UV-Vis absorption intensity (A/A0 × 100%) at λmax to determine the proportion of persisting AgNPs in an aqueous NaCl solution (37.5 mM) was 58% for HO-PEG5k-OH, 80% for c-PEG5k, and 40% for MeO-PEG5k-OMe, despite the fact that AgNPs with c-PEG5k were much smaller than those with HO-PEG5k-OH and MeO-PEG5k-OMe.

10.
J Am Chem Soc ; 144(39): 17905-17915, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36150017

RESUMEN

Synchronously and thoroughly adjusting the chemical structure difference between two blocks of the diblock copolymer is very useful for designing materials but difficult to achieve via self-switchable alternating copolymerization. Here, we report self-switchable alternating copolymerization from a mixture of two different cyclic anhydrides, epoxides, and oxetanes, where a simple alkali metal carboxylate catalyst switches between ring-opening alternating copolymerization (ROCOP) of cyclic anhydrides/epoxides and ROCOP of cyclic anhydrides/oxetanes, resulting in the formation of a perfect block tetrapolymer. By investigating the reactivity ratio of these comonomers, a reactivity gradient was established, enabling the precise synthesis of block copolymers with synchronous adjustment of each unit's chemical structure/sequence/topology. Consequently, a diblock tetrapolymer with two glass transition temperatures (Tg) can be easily produced by adjusting the difference in chemical structures between the two blocks.

11.
Nanoscale Adv ; 4(2): 532-545, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36132700

RESUMEN

Silver nanoparticles (AgNPs) are practically valuable in biological applications. However, no steady PEGylation has been established, which is essential for internal use in humans or animals. In this study, cyclic PEG (c-PEG) without any chemical inhomogeneity is physisorbed onto AgNPs to successfully PEGylate and drastically enhance the dispersion stability against physiological conditions, white light, and high temperature. In contrast, linear HO-PEG-OH and MeO-PEG-OMe do not confer stability to AgNPs, and HS-PEG-OMe, which is often used for gold nanoparticles, sulfidates the surface to considerably degrade the properties. TEM shows an essentially intact nanostructure of c-PEG-physisorbed AgNPs even after heating at 95 °C, while complete disturbance is observed for other AgNPs. Molecular weight- and concentration-dependent stabilization by c-PEG is investigated, and DLS and ζ-potential measurements prove the formation of a c-PEG layer on the surface of AgNPs. Furthermore, c-PEG-physisorbed AgNPs exhibit persistent antimicrobial activity and cytotoxicity.

12.
Biomacromolecules ; 23(9): 3978-3989, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039560

RESUMEN

Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach. In the bulk, the BCOs self-assembled into common lamellar, cylindrical, and spherical carbohydrate microdomains as well as double gyroid, hexagonally perforated lamellar, and Fddd network morphologies with domain spacings of ∼7 nm. In thin films, long-range-ordered periodic carbohydrate microdomains were fabricated via spin coating. Such controlled spatial arrangements of functional carbohydrate moieties on the nanoscale have great application potential in biomedical and nanofabrication fields.


Asunto(s)
Nanoestructuras , Carbohidratos , Nanoestructuras/química
13.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630875

RESUMEN

Block copolymers (BCPs) have garnered considerable interest due to their ability to form microphase-separated structures suitable for nanofabrication. For these applications, it is critical to achieve both sufficient etch selectivity and a small domain size. To meet both requirements concurrently, we propose the use of oligosaccharide and oligodimethylsiloxane as hydrophilic and etch-resistant hydrophobic inorganic blocks, respectively, to build up a novel BCP system, i.e., carbohydrate-inorganic hybrid BCP. The carbohydrate-inorganic hybrid BCPs were synthesized via a click reaction between oligodimethylsiloxane with an azido group at each chain end and propargyl-functionalized maltooligosaccharide (consisting of one, two, and three glucose units). In the bulk state, small-angle X-ray scattering revealed that these BCPs microphase separated into gyroid, asymmetric lamellar, and symmetric lamellar structures with domain-spacing ranging from 5.0 to 5.9 nm depending on the volume fraction. Additionally, we investigated microphase-separated structures in the thin film state and discovered that the BCP with the most asymmetric composition formed an ultrafine and highly oriented gyroid structure as well as in the bulk state. After reactive ion etching, the gyroid thin film was transformed into a nanoporous-structured gyroid SiO2 material, demonstrating the material's promising potential as nanotemplates.

14.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566993

RESUMEN

The topology effects of cyclization on thermal phase transition behaviors were investigated for a series of amphiphilic Pluronic copolymers of both hydrophilic-hydrophobic-hydrophilic and hydrophobic-hydrophilic-hydrophobic block sequences. The dye solubilization measurements revealed the lowered critical micelle temperatures (TCMT) along with the decreased micellization enthalpy (ΔHmic) and entropy (ΔSmic) for the cyclized species. Furthermore, the transmittance and dynamic light scattering (DLS) measurements indicated a block sequence-dependent effect on the clouding phenomena, where a profound decrease in cloud point (Tc) was only found for the copolymers with a hydrophilic-hydrophobic-hydrophilic block sequence. Thus, the effect of cyclization on these critical temperatures was manifested differently depending on its block sequence. Finally, a comparison of the linear hydroxy-terminated, methoxy-terminated, and cyclized species indicated the effect of cyclization to be unique from a simple elimination of the terminal hydrophilic moieties.

15.
Nat Commun ; 13(1): 163, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013294

RESUMEN

Switchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.

16.
Langmuir ; 38(17): 5286-5295, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34878285

RESUMEN

Unique physical and chemical properties arising from a polymer topology recently draw significant attention. In this study, cyclic poly(ethylene glycol) (c-PEG) was found to significantly interact with bovine serum albumin (BSA), suggested by nuclear magnetic resonance, dynamic light scattering, and fluorescence spectroscopy. On the other hand, linear HO-PEG-OH and MeO-PEG-OMe showed no affinity. Furthermore, a complex of gold nanoparticles and c-PEG (AuNPs/c-PEG) attracted BSA to form aggregates, and the red color of the AuNPs dispersion evidently disappeared, whereas ones with linear PEG or without PEG did not demonstrate such a phenomenon. The interactions among BSA, AuNPs, and PEG were investigated by changing the incubation time and concentration of the components by using UV-Vis and fluorescence spectroscopy.


Asunto(s)
Oro , Nanopartículas del Metal , Colorimetría , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Albúmina Sérica Bovina/química
17.
Polymers (Basel) ; 13(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34883672

RESUMEN

Herein, we report the Suzuki-Miyaura catalyst-transfer polycondensation (SCTP) of triolborate-type carbazole monomers, i.e., potassium 3-(6-bromo-9-(2-octyldodecyl)-9H-carbazole-2-yl)triolborate (M1) and potassium 2-(7-bromo-9-(2-octyldodecyl)-9H-carbazole-2-yl) triolborate (M2), as an efficient and versatile approach for precisely synthesizing poly[9-(2-octyldodecyl)-3,6-carbazole] (3,6-PCz) and poly[9-(2-octyldodecyl)-2,7-carbazole] (2,7-PCz), respectively. The SCTP of triolborate-type carbazole monomers was performed in a mixture of THF/H2O using an initiating system consisted of 4-iodobenzyl alcohol, Pd2(dba)3•CHCl3, and t-Bu3P. In the SCTP of M1, cyclic by-product formation was confirmed, as reported for the corresponding pinacolboronate-type monomer. By optimizing the reaction temperature and reaction time, we successfully synthesized linear end-functionalized 3,6-PCz for the first time. The SCTP of M2 proceeded with almost no side reaction, yielding 2,7-PCz with a functional initiator residue at the α-chain end. Kinetic and block copolymerization experiments demonstrated that the SCTP of M2 proceeded in a chain-growth and controlled/living polymerization manner. This is a novel study on the synthesis of 2,7-PCz via SCTP. By taking advantage of the well-controlled nature of this polymerization system, we demonstrated the synthesis of high-molecular-weight 2,7-PCzs (Mn = 5-38 kg mol-1) with a relatively narrow ÐM (1.35-1.48). Furthermore, we successfully synthesized fluorene/carbazole copolymers as well as 2,7-PCz-containing diblock copolymers, demonstrating the versatility of the present polymerization system as a novel synthetic strategy for well-defined polycarbazole-based materials.

18.
Sci Rep ; 11(1): 22446, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789822

RESUMEN

The first polyhydroxyalkanoate (PHA) block copolymer poly(2-hydroxybutyrate-b-3-hydroxybutyrate) [P(2HB-b-3HB)] was previously synthesized using engineered Escherichia coli expressing a chimeric PHA synthase PhaCAR with monomer sequence-regulating capacity. In the present study, the physical properties of the block copolymer and its relevant random copolymer P(2HB-ran-3HB) were evaluated. Stress-strain tests on the P(88 mol% 2HB-b-3HB) film showed an increasing stress value during elongation up to 393%. In addition, the block copolymer film exhibited slow contraction behavior after elongation, indicating that P(2HB-b-3HB) is an elastomer-like material. In contrast, the P(92 mol% 2HB-ran-3HB) film, which was stretched up to 692% with nearly constant stress, was stretchable but not elastic. The differential scanning calorimetry and wide-angle X-ray diffraction analyses indicated that the P(2HB-b-3HB) contained the amorphous P(2HB) phase and the crystalline P(3HB) phase, whereas P(2HB-ran-3HB) was wholly amorphous. Therefore, the elasticity of P(2HB-b-3HB) can be attributed to the presence of the crystalline P(3HB) phase and a noncovalent crosslinked structure by the crystals. These results show the potential of block PHAs as elastic materials.

19.
Mater Horiz ; 8(8): 2251-2259, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846429

RESUMEN

RNA drugs hold real potential for tackling devastating diseases that are currently resistant to small molecule drugs or monoclonal antibodies. However, since these drugs are unstable in vivo and unable to pass through cellular membranes their clinical realization is limited by their successful delivery to target sites. Herein we report on the design of a combinatorial library of polyester lipomers based on the renewable monomer, ε-decalactone (ε-DL), via organocatalytic ring-opening polymerization for mRNA delivery. The ε-DL lipomers showed a surprisingly efficient ability to target the lungs upon intravenous administration. Interestingly, most of the lipomers achieved functional EGFP expression in the lungs, while minimally transfecting hepatocytes and splenic cells. This simple approach for the design of biodegradable materials has the potential for the clinical translation of genetic medicines for the treatment of lung diseases.


Asunto(s)
Hígado , Pulmón , Lactonas , Ligandos , Hígado/cirugía , Pulmón/cirugía , ARN Mensajero/genética
20.
Angew Chem Int Ed Engl ; 60(33): 18122-18128, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041829

RESUMEN

Developing an efficient and versatile process to transform a single linear polymer chain into a shape-defined nanoobject is a major challenge in the fields of chemistry and nanotechnology to replicate sophisticated biological functions of proteins and nucleic acids in a synthetic polymer system. In this study, we performed one-shot intrablock cross-linking of linear block copolymers (BCPs) to realize single-chain nanoparticles (SCNPs) with two chemically compartmentalized domains (Janus-shaped SCNPs). Detailed structural characterizations of the Janus-shaped SCNP composed of polystyrene-block-poly(glycolic acid) revealed its compactly folded conformation and compartmentalized block localization, similar to the self-folded tertiary structures of natural proteins. Versatility of the one-shot intrablock cross-linking was demonstrated using several different BCP precursors. In addition, the Janus-shaped SCNP produce miniscule microphase-separated structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA