Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 30(7): 2010-2019, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951635

RESUMEN

For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented. To test this hypothesis, we present a neuroprosthetic interface consisting of surgically connected, agonist-antagonist muscles including muscle-sensing electrodes. In a cohort of seven leg amputees, the interface is shown to augment residual muscle afferents by 18% of biologically intact values. Compared with a matched amputee cohort without the afferent augmentation, the maximum neuroprosthetic walking speed is increased by 41%, enabling equivalent peak speeds to persons without leg amputation. Further, this level of afferent augmentation enables biomimetic adaptation to various walking speeds and real-world environments, including slopes, stairs and obstructed pathways. Our results suggest that even a small augmentation of residual muscle afferents restores biomimetic gait under continuous neuromodulation in individuals with leg amputation.


Asunto(s)
Amputación Quirúrgica , Amputados , Miembros Artificiales , Biomimética , Biónica , Marcha , Humanos , Marcha/fisiología , Biomimética/métodos , Masculino , Persona de Mediana Edad , Adulto , Femenino , Músculo Esquelético/inervación , Caminata , Pierna/cirugía
3.
Commun Med (Lond) ; 2: 97, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942078

RESUMEN

Background: Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated. Methods: Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs. Research has shown that varied motor control in biologically intact limbs is executed by the activation of muscle synergies. Here, we assess the naturalness of phantom joint motor control postamputation based on extracted muscle synergies and their activation profiles. Muscle synergy extraction, degree of agonist-antagonist muscle strain, and perception capacity are estimated from electromyography, ultrasonography, and goniometry, respectively. Results: Here, we show significant positive correlations (P < 0.005-0.05) between sensorimotor responses and residual limb agonist-antagonist muscle strain. Identified trends indicate that preserving even 20-26% of agonist-antagonist muscle strain within the residuum compared to a biologically intact limb is effective in preserving natural motor control postamputation, though preserving limb perception capacity requires more (61%) agonist-antagonist muscle strain preservation. Conclusions: The results suggest that agonist-antagonist muscle strain is a characteristic, readily ascertainable residual limb structural feature that can help explain variability in amputation outcome, and agonist-antagonist muscle strain preserving surgical amputation strategies are one way to enable more effective and biomimetic sensorimotor control postamputation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...