Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215834

RESUMEN

Preeclampsia (PE) is associated with increased angiotensin II sensitivity and poor neurological outcomes marked by temporal loss of neural control of blood pressure. Yet the role of centrally expressed angiotensin II type 1 receptor (AT1R) within the paraventricular nucleus of the hypothalamus (PVN) in the PE model is not understood. In a PE rat model with reduced placental perfusion pressure (RUPP) induced on gestational day 14 (GD14), the PVN expression and cellular localization of AT1R were assessed using immunofluorescence and western blotting. The sensitivity of RUPP to acute angiotensin II infusion was assessed. AT1R was antagonized by losartan (100 µg/kg/day) for 5 days intracerebroventricularly (ICV). Hemodynamic data and samples were collected on GD19 for further analysis. RUPP upregulated (p < 0.05) mRNA and protein of AT1R within the PVN and lowered (p < 0.05) circulating angiotensin II in rats. RUPP increased neural and microglial activation. Cellular localization assessment revealed that AT1R was primarily expressed in neurons and slightly in microglia and astrocytes. Infusion of 100 ng/kg as bolus increased the mean arterial pressure (MAP in mmHg) in both RUPP and Sham. ICV losartan infusion attenuated RUPP-increased MAP (113.6 ± 6.22 in RUPP vs. 92.16 ± 5.30 in RUPP + Los, p = 0.021) and the expression of nuclear transcription factor NF-κB, tyrosine hydroxylase (TH), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) in the PVN. Our data suggest that centrally expressed AT1R, within the PVN, contributes to placental ischemia-induced hypertension in RUPP rats highlighting its therapeutic potential in PE.

2.
Cardiovasc Toxicol ; 24(9): 904-917, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39008239

RESUMEN

Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 µg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Modelos Animales de Enfermedad , Activación Enzimática , Hipertensión Renovascular , Proteína Quinasa 3 Activada por Mitógenos , Núcleo Hipotalámico Paraventricular , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1 , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiopatología , Hipertensión Renovascular/fisiopatología , Hipertensión Renovascular/enzimología , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/tratamiento farmacológico , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Receptor de Angiotensina Tipo 1/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Transcripción ReIA/metabolismo , Ribonucleótidos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Antihipertensivos/farmacología , Ratas
3.
Life Sci ; 320: 121351, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592790

RESUMEN

Hypertension remains a threat for society due to its unknown causes, preventing proper management, for the growing number of patients, for its state as a high-risk factor for stroke, cardiac and renal complication and as cause of disability. Data from clinical and animal researches have suggested the important role of many soluble factors in the pathophysiology of hypertension through their neuro-stimulating effects. Central targets of these factors are of molecular, cellular and structural nature. Preeclampsia (PE) is characterized by high level of soluble factors with strong pro-hypertensive activity and includes immune factors such as proinflammatory cytokines (PICs). The potential neural effect of those factors in PE is still poorly understood. Shedding light into the potential central effect of the soluble factors in PE may advance our current comprehension of the pathophysiology of hypertension in PE, which will contribute to better management of the disease. In this paper, we summarized existing data in respect of hypothesis of this review, that is, the existence of the neural component in the pathophysiology of the hypertension in PE. Future studies would address this hypothesis to broaden our understanding of the pathophysiology of hypertension in PE.


Asunto(s)
Hipertensión , Preeclampsia , Humanos , Femenino , Animales , Embarazo , Factores de Riesgo , Riñón , Citocinas , Placenta
4.
Int Immunopharmacol ; 101(Pt B): 108365, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815190

RESUMEN

Preeclampsia (PE) is characterized by hypertension, autonomic imbalance and inflammation. The subfornical organ (SFO) reportedly relays peripheral inflammatory mediator's signals to the paraventricular nucleus (PVN), a brain autonomic center shown to mediate hypertension in hypertensive rat but not yet in PE rat models. Additionally, we previously showed that Pyridostigmine (PYR), an acetylcholinesterase inhibitor, attenuated placental inflammation and hypertension in PE models. In this study, we investigated the effect of PYR on the activities of these brain regions in PE model. PYR (20 mg/kg/day) was administered to reduced uterine perfusion pressure (RUPP) Sprague-Dawley rat from gestational day (GD) 14 to GD19. On GD19, the mean arterial pressure (MAP) was recorded and samples were collected for analysis. RUPP rats exhibited increased MAP (P = 0.0025), elevated circulating tumor necrosis factor-α (TNF-α, P = 0.0075), reduced baroreflex sensitivity (BRS), increased neuroinflammatory markers including TNF-α, interleukin-1ß (IL-1ß), microglial activation (P = 0.0039), oxidative stress and neuronal excitation within the PVN and the SFO. Changes in MAP, in molecular and cellular expression induced by RUPP intervention were improved by PYR. The ability of PYR to attenuate TNF-α mediated central effect was evaluated in TNF-α-infused pregnant rats. TNF-α infusion-promoted neuroinflammation in the PVN and SFO in dams was abolished by PYR. Collectively, our data suggest that PYR improves PE-like symptoms in rat by dampening placental ischemia and TNF-α-promoted inflammation and pro-hypertensive activity in the PVN. This broadens the therapeutical potential of PYR in PE.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Hipertensión/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Preeclampsia/tratamiento farmacológico , Bromuro de Piridostigmina/farmacología , Transportadoras de Casetes de Unión a ATP , Animales , Proteínas Bacterianas , Barorreflejo/efectos de los fármacos , Biomarcadores/metabolismo , Presión Sanguínea/efectos de los fármacos , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Distribución Aleatoria , Ratas , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/toxicidad
5.
J Hypertens ; 39(9): 1774-1789, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232157

RESUMEN

OBJECTIVE: Preeclampsia is a hypertensive disorder of pregnancy marked by an excessive inflammatory response. The anti-inflammatory effect of pyridostigmine (PYR) was previously reported; however, its role in hypertensive pregnancies remains unclear. We hypothesized that PYR could attenuate increased blood pressure and other pathological features in preeclampsia models. METHODS: The expression of tumour necrosis factor (TNF)-α was evaluated in normal and preeclampsia pregnant women. PYR (20 mg/kg) was administered daily to reduced uterine perfusion pressure (RUPP) and TNF-α (150 ng/day) infused rats from gestation day 14 to GD19. In a cell culture experiment, the effect of acetylcholine (ACh) on TNF-α-stimulated primary human umbilical endothelial cells (HUVEC) was assessed. RESULTS: Preeclampsia women had higher placental TNF-α expression than normal pregnant women. Mean arterial pressure (MAP) in the RUPP group was higher than in the Sham group. PYR inhibited serum and placental acetylcholinesterase activity in rats, and reduced MAP, placental oxidative stress, apoptosis and inflammation in the RUPP group but not in the Sham group. In addition, PYR significantly attenuated the TNF-α-induced increase in MAP, placental oxidative stress and apoptosis. Moreover, TNF-α decreased cell viability and increased the number of TUNEL-positive nuclei of HUVEC, which could largely be abolished by ACh treatment. CONCLUSION: Collectively, PYR ameliorated hypertension and other preeclampsia-like symptoms in rat models of preeclampsia not only by inhibiting the synthesis of TNF-α but also by acting against TNF-α-induced detrimental effects directly, which is worthy of further investigation and may be used as a potential agent for preeclampsia management.


Asunto(s)
Preeclampsia , Acetilcolinesterasa , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Células Endoteliales , Femenino , Humanos , Isquemia , Placenta , Preeclampsia/tratamiento farmacológico , Embarazo , Bromuro de Piridostigmina/farmacología , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...