Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888228

RESUMEN

Callose, a ß-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.

2.
J Integr Plant Biol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869289

RESUMEN

Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54's binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.

3.
Plant Biotechnol J ; 21(1): 17-45, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36036862

RESUMEN

Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Humanos , Resistencia a la Enfermedad/genética , Ingeniería Genética/métodos , Productos Agrícolas/genética , Caminata , Edición Génica/métodos , Enfermedades de las Plantas/genética , Genoma de Planta , Fitomejoramiento
4.
Mol Plant Pathol ; 23(9): 1390-1398, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35616618

RESUMEN

During pathogenesis, effector proteins are secreted from the pathogen to the host plant to provide virulence activity for invasion of the host. However, once the host plant recognizes one of the delivered effectors, effector-triggered immunity activates a robust immune and hypersensitive response (HR). In planta, the effector AvrRps4 is processed into the N-terminus (AvrRps4N ) and the C-terminus (AvrRps4C ). AvrRps4C is sufficient to trigger HR in turnip and activate AtRRS1/AtRPS4-mediated immunity in Arabidopsis; on the other hand, AvrRps4N induces HR in lettuce. Furthermore, AvrRps4N -mediated HR requires a conserved arginine at position 112 (R112), which is also important for full-length AvrRps4 (AvrRps4F ) processing. Here, we show that effector processing and effector recognition in lettuce are uncoupled for the AvrRps4 family. In addition, we compared effector recognition by lettuce of AvrRps4 and its homologues, HopK1 and XopO. Interestingly, unlike for AvrRps4 and HopK1, mutation of the conserved R111 in XopO by itself was insufficient to abolish recognition. The combination of amino acid substitutions arginine 111 to leucine with glutamate 114 to lysine abolished the XopO-mediated HR, suggesting that AvrRps4 family members have distinct structural requirements for perception by lettuce. Together, our results provide an insight into the processing and recognition of AvrRps4 and its homologues.


Asunto(s)
Arabidopsis , Lactuca , Arginina/metabolismo , Lactuca/genética , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virulencia
5.
Mol Plant Pathol ; 23(6): 795-804, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569687

RESUMEN

Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.


Asunto(s)
Oomicetos , Plasmodesmos , Interacciones Huésped-Patógeno , Oomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Plasmodesmos/metabolismo
6.
Front Plant Sci ; 13: 1107224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743578

RESUMEN

Plasmodesmata (PD) play a critical role in symplasmic communication, coordinating plant activities related to growth & development, and environmental stress responses. Most developmental and environmental stress signals induce reactive oxygen species (ROS)-mediated signaling in the apoplast that causes PD closure by callose deposition. Although the apoplastic ROS signals are primarily perceived at the plasma membrane (PM) by receptor-like kinases (RLKs), such components involved in PD regulation are not yet known. Here, we show that an Arabidopsis NOVEL CYS-RICH RECEPTOR KINASE (NCRK), a PD-localized protein, is required for plasmodesmal callose deposition in response to ROS stress. We identified the involvement of NCRK in callose accumulation at PD channels in either basal level or ROS-dependent manner. Loss-of-function mutant (ncrk) of NCRK induces impaired callose accumulation at the PD under the ROS stress resembling a phenotype of the PD-regulating GLUCAN SYNTHASE-LIKE 4 (gsl4) knock-out plant. The overexpression of transgenic NCRK can complement the callose and the PD permeability phenotypes of ncrk mutants but not kinase-inactive NCRK variants or Cys-mutant NCRK, in which Cys residues were mutated in Cys-rich repeat ectodomain. Interestingly, NCRK mediates plasmodesmal permeability in mechanical injury-mediated signaling pathways regulated by GSL4. Furthermore, we show that NCRK interacts with calmodulin-like protein 41 (CML41) and GSL4 in response to ROS stress. Altogether, our data indicate that NCRK functions as an upstream regulator of PD callose accumulation in response to ROS-mediated stress signaling pathways.

7.
Front Plant Sci ; 12: 679140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149780

RESUMEN

Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.

8.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946790

RESUMEN

Plants rely on multiple immune systems to protect themselves from pathogens. When pattern-triggered immunity (PTI)-the first layer of the immune response-is no longer effective as a result of pathogenic effectors, effector-triggered immunity (ETI) often provides resistance. In ETI, host plants directly or indirectly perceive pathogen effectors via resistance proteins and launch a more robust and rapid defense response. Resistance proteins are typically found in the form of nucleotide-binding and leucine-rich-repeat-containing receptors (NLRs). Upon effector recognition, an NLR undergoes structural change and associates with other NLRs. The dimerization or oligomerization of NLRs signals to downstream components, activates "helper" NLRs, and culminates in the ETI response. Originally, PTI was thought to contribute little to ETI. However, most recent studies revealed crosstalk and cooperation between ETI and PTI. Here, we summarize recent advancements in our understanding of the ETI response and its components, as well as how these components cooperate in the innate immune signaling pathways. Based on up-to-date accumulated knowledge, this review provides our current perspective of potential engineering strategies for crop protection.


Asunto(s)
Inmunidad de la Planta , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Modelos Inmunológicos , Proteínas NLR/genética , Proteínas NLR/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
9.
Plants (Basel) ; 10(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924988

RESUMEN

Plant resistance proteins recognize cognate pathogen avirulence proteins (also named effectors) to implement the innate immune responses called effector-triggered immunity. Previously, we reported that hopA1 from Pseudomonas syringae pv. syringae strain 61 was identified as an avr gene for Arabidopsis thaliana. Using a forward genetic screen approach, we cloned a hopA1-specific TIR-NBS-LRR class disease resistance gene, RESISTANCE TO PSEUDOMONAS SYRINGAE6 (RPS6). Many resistance proteins indirectly recognize effectors, and RPS6 is thought to interact with HopA1Pss61 indirectly by surveillance of an effector target. However, the involved target protein is currently unknown. Here, we show RPS6 is the only R protein that recognizes HopA1Pss61 in Arabidopsis wild-type Col-0 accession. Both RPS6 and HopA1Pss61 are co-localized to the nucleus and cytoplasm. HopA1Pss61 is also distributed in plasma membrane and plasmodesmata. Interestingly, nuclear localization of HopA1Pss61 is required to induce cell death as NES-HopA1Pss61 suppresses the level of cell death in Nicotiana benthamiana. In addition, in planta expression of hopA1Pss61 led to defense responses, such as a dwarf morphology, a cell death response, inhibition of bacterial growth, and increased accumulation of defense marker proteins in transgenic Arabidopsis. Functional characterization of HopA1Pss61 and RPS6 will provide an important piece of the ETI puzzle.

10.
Plant Physiol ; 184(1): 407-420, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32636343

RESUMEN

Plasma membranes encapsulated in the symplasmic nanochannels of plasmodesmata (PD) contain abundant lipid rafts, which are enriched with sphingolipids (SLs) and sterols. Reduction of sterols has highlighted the role played by lipid raft integrity in the intercellular trafficking of glycosylphosphatidylinositol (GPI)-anchored PD proteins, particularly in affecting callose enhancement. The presence of callose at PD is strongly attributed to the regulation of callose accumulation and callose degradation by callose synthases and ß-1,3-glucanases (BGs), respectively. SLs are implicated in signaling and membrane protein trafficking; however, the underlying processes linking SL composition to the control of symplasmic apertures remain unknown. The wide variety of SLs in plants prompted us to investigate which SL molecules are important for regulating symplasmic apertures in Arabidopsis (Arabidopsis thaliana). We introduced several potential SL pathway inhibitors and genetically modified SL contents using two independent SL pathway mutants. We were able to modulate callose deposition to control symplasmic connectivity through perturbations of SL metabolism. Alteration in glucosylhydroxyceramides or related SL composition particularly disturbed the secretory machinery for the GPI-anchored PdBG2 protein, resulting in an overaccumulation of callose. Moreover, our results revealed that SL-enriched lipid rafts link symplasmic channeling to PD callose homeostasis by controlling the targeting of GPI-anchored PdBG2. This study elevates our understanding of the molecular linkage underlying intracellular trafficking and precise targeting of GPI-anchored PD proteins incorporating glucosyl SLs.


Asunto(s)
Arabidopsis/metabolismo , Glucanos/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Plasmodesmos/metabolismo , Esfingolípidos/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
Plants (Basel) ; 9(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046090

RESUMEN

Over the last decade, plasmodesmata (PD) symplasmic nano-channels were reported to be involved in various cell biology activities to prop up within plant growth and development as well as environmental stresses. Indeed, this is highly influenced by their native structure, which is lined with the plasma membrane (PM), conferring a suitable biological landscape for numerous plant receptors that correspond to signaling pathways. However, there are more than six hundred members of Arabidopsis thaliana membrane-localized receptors and over one thousand receptors in rice have been identified, many of which are likely to respond to the external stimuli. This review focuses on the class of plasmodesmal-receptor like proteins (PD-RLPs)/plasmodesmal-receptor-like kinases (PD-RLKs) found in planta. We summarize and discuss the current knowledge regarding RLPs/RLKs that reside at PD-PM channels in response to plant growth, development, and stress adaptation.

12.
J Exp Bot ; 69(22): 5325-5339, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30165704

RESUMEN

In plants, communication and molecular exchanges between different cells and tissues are dependent on the apoplastic and symplastic pathways. Symplastic molecular exchanges take place through the plasmodesmata, which connect the cytoplasm of neighboring cells in a highly controlled manner. Callose, a ß-1,3-glucan polysaccharide, is a plasmodesmal marker molecule that is deposited in cell walls near the neck zone of plasmodesmata and controls their permeability. During cell differentiation and plant development, and in response to diverse stresses, the level of callose in plasmodesmata is highly regulated by two antagonistic enzymes, callose synthase or glucan synthase-like and ß-1,3-glucanase. The diverse modes of regulation by callose synthase and ß-1,3-glucanase have been uncovered in the past decades through biochemical, molecular, genetic, and omics methods. This review highlights recent findings regarding the function of plasmodesmal callose and the molecular players involved in callose metabolism, and provides new insight into the mechanisms maintaining plasmodesmal callose homeostasis.


Asunto(s)
Glucanos/metabolismo , Glucosiltransferasas/metabolismo , Plantas/metabolismo , Plasmodesmos/metabolismo , Pared Celular/metabolismo , Homeostasis
13.
Plants (Basel) ; 6(2)2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368351

RESUMEN

Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by ß-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

14.
J Vis Exp ; (110)2016 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-27166513

RESUMEN

The plant hormone auxin plays an important role in many growth and developmental processes, including tropic responses to light and gravity. The establishment of an auxin gradient is a key event leading to phototropism and gravitropism. Previously, polar auxin transport (PAT) was shown to establish an auxin gradient in different cellular domains of plants. However, Han et al. recently demonstrated that for proper auxin gradient formation, plasmodesmal callose-mediated symplasmic connectivity between the adjacent cells is also a critical factor. In this manuscript, the strategy to elucidate the role of particular genes, which can affect phototropism and gravitropism by altering the symplasmic connectivity through modulating plasmodesmal callose synthesis, is discussed. The first step is to screen aberrant tropic responses from 3-day-old etiolated seedlings of mutants or over-expression lines of a gene along with the wild type. This preliminary screening can lead to the identification of a range of genes functioning in PAT or controlling symplasmic connectivity. The second screening involves the sorting of candidates that show altered tropic responses by affecting symplasmic connectivity. To address such candidates, the movement of a symplasmic tracer and the deposition of plasmodesmal callose were examined. This strategy would be useful to explore new candidate genes that can regulate symplasmic connectivity directly or indirectly during tropic responses and other developmental processes.


Asunto(s)
Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Fototropismo/fisiología , Transporte Biológico , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...