Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 146: 103245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754236

RESUMEN

B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación de Linfocitos B , Autoanticuerpos , Autoantígenos , Linfocitos B , Lupus Eritematoso Sistémico , Receptores de Antígenos de Linfocitos B , Ribosomas , Transducción de Señal , Animales , Ribosomas/metabolismo , Ribosomas/inmunología , Ratones , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Autoanticuerpos/inmunología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos CD/metabolismo , Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Transducción de Señal/inmunología , Autoantígenos/inmunología , Ratones Noqueados , Activación de Linfocitos/inmunología , Proliferación Celular , Tolerancia Inmunológica , Humanos
2.
Protein Sci ; 32(10): e4775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661929

RESUMEN

We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.

3.
Biophys Physicobiol ; 19: 1-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797404

RESUMEN

Ever since the historic discovery of the cooperative oxygenation of its multiple subunits, hemoglobin (Hb) has been among the most exhaustively studied allosteric proteins. However, the lack of structural information on the intermediates between oxygenated and deoxygenated forms prevents our detailed understanding of the molecular mechanism of its allostery. It has been difficult to prepare crystals of intact oxy-deoxy intermediates and to individually identify the oxygen saturation for each subunit. However, our recent crystallographic studies have demonstrated that giant Hbs from annelids are suitable for overcoming these problems and can provide abundant information on oxy-deoxy intermediate structures. Here, we report the crystal structures of oxy-deoxy intermediates of a 400 kDa Hb (V2Hb) from the annelid Lamellibrachia satsuma, following up on a series of previous studies of similar giant Hbs. Four intermediate structures had average oxygen saturations of 78%, 69%, 55%, and 26%, as determined by the occupancy refinement of the bound oxygen based on ambient temperature factors. The structures demonstrate that the cooperative oxygen dissociation is weaker, large ternary and quaternary changes are induced at a later stage of the oxygen dissociation process, and the ternary and quaternary changes are smaller with local perturbations. Nonetheless, the overall structural transition seemed to proceed in the manner of the MWC two-state model. Our crystallographic snapshots of the allosteric transition of V2Hb provide important experimental evidence for a more detailed understanding of the allostery of Hbs by extension of the Monod-Wyman-Changeux (MWC) model.

5.
Protein J ; 41(1): 71-78, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35094218

RESUMEN

Protein structures fluctuate in solution; therefore, proteins have multiple stable structures that are slightly different from each other. In this study, we determined the crystal structure of hen egg lysozyme refolded after denaturation at acidic pH (rHEL) and found a structure different from native HEL (nHEL). The different local conformations of the peptide bond between Asp101 and Gly102 found in the crystal structure was supported by the NMR results for nHEL and rHEL. The NMR experiments also showed shifts in the heteronuclear single quantum coherence signals derived from Thr43 and Asp52. The chemical shift change of Asp52 could be explained by the crystal structure of rHEL, showing the conformational change of Tyr53, whose phenol ring directly lies on the main chain of Asp52. The catalytic activity of rHEL was similar to that of nHEL, indicating that the conformational change had little effect on activity. In contrast, conformational changes could be detected by the binding of monoclonal antibodies against HEL. Using multiple methods, we successfully detected the unusual structure of HEL, which might be another stable structure of HEL in solution.


Asunto(s)
Anticuerpos Monoclonales , Muramidasa , Animales , Pollos/metabolismo , Concentración de Iones de Hidrógeno , Muramidasa/química
6.
Biomolecules ; 12(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053278

RESUMEN

1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3, 1] is an active form of vitamin D3 and regulates various biological phenomena, including calcium and phosphate homeostasis, bone metabolism, and immune response via binding to and activation of vitamin D receptor (VDR). Lithocholic acid (LCA, 2) was identified as a second endogenous agonist of VDR, though its potency is very low. However, the lithocholic acid derivative 3 (Dcha-20) is a more potent agonist than 1α,25(OH)2D3, (1), and its carboxyl group has similar interactions to the 1,3-dihydroxyl groups of 1 with amino acid residues in the VDR ligand-binding pocket. Here, we designed and synthesized amide derivatives of 3 in order to clarify the role of the carboxyl group. The synthesized amide derivatives showed HL-60 cell differentiation-inducing activity with potency that depended upon the substituent on the amide nitrogen atom. Among them, the N-cyanoamide 6 is more active than either 1 or 3.


Asunto(s)
Ácido Litocólico , Receptores de Calcitriol , Amidas/farmacología , Colecalciferol , Humanos , Ácido Litocólico/metabolismo , Ácido Litocólico/farmacología , Unión Proteica , Receptores de Calcitriol/metabolismo
7.
Biophys Rev ; 14(6): 1211-1222, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36620377

RESUMEN

Receiving his initial training jointly in theoretical and applied physics at the University of Tokyo, Professor Haruki Nakamura has had a long and eventful scientific career, along the way helping to shape the way that biophysics is carried out in Japan. Concentrating his research efforts on the simulation of protein structure and function, he has, over his career arc, acted as director of the Institute for Protein Research (Osaka, Japan), director of the Protein Data Bank of Japan (PDBj), president of the Biophysical Society of Japan (BSJ), president of the Protein Science Society of Japan (PSSJ), and group leader and professor of Bioinformatics and Computational Structural Biology at Osaka University. In 2022, Prof. Haruki Nakamura turned 70 years old, and to mark this occasion, his scientific colleagues from around the world have combined their efforts to produce this Festschrift Issue of the IUPAB Biophysical Reviews journal around the theme of the computational biophysics and structural biology of proteins.

8.
Chembiochem ; 23(2): e202100435, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34698422

RESUMEN

Natural aldolase enzymes and created retro-aldolase protein catalysts often catalyze both aldol and retro-aldol reactions depending on the concentrations of the reactants and the products. Here, we report that the directionality of protein catalysts can be altered by replacing one amino acid. The protein catalyst derived from a scaffold of a previously reported retro-aldolase catalyst, catalyzed aldol reactions more efficiently than the previously reported retro-aldolase catalyst. The retro-aldolase catalyst efficiently catalyzed the retro-aldol reaction but was less efficient in catalyzing the aldol reaction. The results indicate that protein catalysts with varying levels of directionality in usually reversibly catalyzed aldol and retro-aldol reactions can be generated from the same protein scaffold.


Asunto(s)
Aldehídos/metabolismo , Proteínas/metabolismo , Catálisis , Estereoisomerismo
9.
IUCrJ ; 8(Pt 6): 954-962, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804547

RESUMEN

Cooperative oxygen binding of hemoglobin (Hb) has been studied for over half a century as a representative example of the allostericity of proteins. The most important problem remaining to be solved is the lack of structural information on the intermediates between the oxygenated and deoxygenated forms. In order to characterize the intermediate structures, it is necessary to obtain intermediate-state crystals, determine their oxygen saturations and then determine the oxygen saturations of each of their constituent subunits, all of which are challenging issues even now. Here, intermediate forms of the 400 kDa giant Hb from the tubeworm Oligobrachia mashikoi are reported. To overcome the above problems without any artificial modifications to the protein or prosthetic groups, intermediate crystals of the giant Hb were prepared from fully oxygenated crystals by a soaking method. The oxygen saturation of the crystals was measured by in situ observation with a microspectrophotometer using thin plate crystals processed by an ultraviolet laser to avoid saturation of absorption. The oxygen saturation of each subunit was determined by occupancy refinement of the bound oxygen based on ambient temperature factors. The obtained structures reveal the detailed relationship between the structural transition and oxygen dissociation. The dimer subassembly of the giant Hb shows strong correlation with the local structural changes at the heme pockets. Although some local ternary-structural changes occur in the early stages of the structural transition, the associated global ternary-structural and quaternary-structural changes might arise at about 50% oxygen saturation. The models based on coarse snapshots of the allosteric transition support the conventional two-state model of Hbs and provide the missing pieces of the intermediate structures that are required for full understanding of the allosteric nature of Hbs in detail.

10.
Commun Biol ; 4(1): 1175, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635772

RESUMEN

DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Daño del ADN , Reparación del ADN , Proteína HMGB1/fisiología , Autoantígeno Ku/metabolismo , Transducción de Señal/genética , Animales , Proteína HMGB1/genética , Ratones , Ratones Transgénicos , Fosforilación
11.
ACS Chem Neurosci ; 12(16): 3015-3027, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34319089

RESUMEN

Tau aggregation is a central hallmark of tauopathies such as frontotemporal lobar degeneration and progressive supranuclear palsy as well as of Alzheimer's disease, and it has been a target for therapeutic development. Herein, we unexpectedly found that hepta-histidine (7H), an inhibitor of the interaction between Ku70 and Huntingtin proteins, suppresses aggregation of Tau-R3 peptides in vitro. Addition of the trans-activator of transcription (TAT) sequence (YGRKKRRQRRR) derived from the TAT protein to 7H increased its permeability into cells, and TAT-7H treatment of iPS cell-derived neurons carrying Tau or APP mutations suppressed Tau phosphorylation. These results indicate that 7H is a promising lead compound for developing anti-aggregation drugs against Tau-related neurodegenerative diseases including Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Degeneración Lobar Frontotemporal , Tauopatías , Enfermedad de Alzheimer/tratamiento farmacológico , Histidina , Humanos , Proteínas tau
12.
Mol Immunol ; 131: 51-59, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33386150

RESUMEN

During T-cell regulation, T-cell receptors and CD28 lead to signaling activation, while T-lymphocyte antigen 4 (CTLA-4) is known to lead to downregulation, similar to programmed cell death-1 (PD-1). In the cytoplasmic tails of CD28 and CTLA-4, phosphoinositide 3-kinase (PI3K) binds to the consensus sequence including phosphotyrosine via SH2 domains, N- and C-terminal SH2 domains (nSH2 and cSH2), of its regulatory subunit, p85. In this study, we determined the crystal structure of a CTLA-4-derived phosphopeptide in complex with a Cys-substituted mutant of cSH2, C656S/C659V/C670L, at a 1.1 Å resolution. Phosphotyrosine of the bound peptide is tightly accommodated by the residues Arg631, Arg649, Ser651, and Ser652, similar to the cSH2 wild-type recognition mode of CD28, as reported previously. Upon the Cys mutation, the cSH2 thermal stability increased while the CTLA-4 binding affinity slightly changed. The binding experiments also showed that the binding affinity of CTLA-4 by cSH2 was approximately two orders of magnitude lower than that of CD28. Similar to CD28 binding, the CTLA-4 binding affinity of nSH2 was lower than that of cSH2. The complex structure of nSH2 and CTLA-4 was modeled, and compared with the crystal structure of cSH2 mutant and CTLA-4. The difference in the binding affinity between CD28 and CTLA-4, along with the difference between nSH2 and cSH2, could be explained by the 3D structures, which would be closely correlated with the respective T-cell signaling.


Asunto(s)
Antígeno CTLA-4/metabolismo , Citoplasma/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Dominios Homologos src/fisiología , Secuencia de Aminoácidos , Antígenos CD28/metabolismo , Escherichia coli/metabolismo , Mutación/genética , Fosfopéptidos/metabolismo , Transducción de Señal/fisiología , Linfocitos T/metabolismo
13.
Proteins ; 89(5): 502-511, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340163

RESUMEN

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Asunto(s)
Actinobacteria/química , Proteínas Bacterianas/química , Calcio/química , Hidrolasas de Éster Carboxílico/química , Contaminantes Ambientales/química , Tereftalatos Polietilenos/química , Actinobacteria/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calcio/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Contaminantes Ambientales/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Hidrólisis , Modelos Moleculares , Mutación , Tereftalatos Polietilenos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
14.
J Med Chem ; 64(1): 516-526, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33369416

RESUMEN

Lithocholic acid (2) was identified as a second endogenous ligand of vitamin D receptor (VDR), though its activity is very weak. In this study, we designed novel lithocholic acid derivatives based on the crystal structure of VDR-ligand-binding domain (LBD) bound to 2. Among the synthesized compounds, 6 bearing a 2-hydroxy-2-methylprop-1-yl group instead of the 3-hydroxy group at the 3α-position of 2 showed dramatically increased activity in HL-60 cell differentiation assay, being at least 10 000 times more potent than lithocholic acid (2) and 3 times more potent than 1α,25-dihydroxyvitamin D3 (1). Although the binding affinities of 6 and its epimer 7 were less than that of 1, their transactivation activities were greater than that of 1. X-ray structure analyses of VDR LBD bound to 6 or 7 showed that the binding positions of these compounds in the ligand-binding pocket are similar to that of 1.


Asunto(s)
Ácido Litocólico/farmacología , Receptores de Calcitriol/agonistas , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Células HL-60 , Humanos , Ligandos , Ácido Litocólico/administración & dosificación , Ácido Litocólico/química , Estructura Molecular , Unión Proteica , Receptores de Calcitriol/metabolismo
15.
J Biochem ; 169(2): 207-213, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32882044

RESUMEN

An enzyme, Cut190, from a thermophilic isolate, Saccharomonospora viridis AHK190 could depolymerize polyethylene terephthalate (PET). The catalytic activity and stability of Cut190 and its S226P/R228S mutant, Cut190*, are regulated by Ca2+ binding. We previously determined the crystal structures of the inactive mutant of Cut190*, Cut190*S176A, in complex with metal ions, Ca2+ and Zn2+, and substrates, monoethyl succinate and monoethyl adipate. In this study, we determined the crystal structures of another mutant of Cut190*, Cut190**, in which the three C-terminal residues of Cut190* are deleted, and the inactive mutant, Cut190**S176A, in complex with metal ions. In addition to the previously observed closed, open and engaged forms, we determined the ejecting form, which would allow the product to irreversibly dissociate, followed by proceeding to the next cycle of reaction. These multiple forms would be stable or sub-stable states of Cut190, regulated by Ca2+ binding, and would be closely correlated with the enzyme function. Upon the deletion of the C-terminal residues, we found that the thermal stability increased while retaining the activity. The increased stability could be applied for the protein engineering of Cut190 for PET depolymerization as it requires the reaction above the glass transition temperature of PET.


Asunto(s)
Actinobacteria/enzimología , Calcio/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Tereftalatos Polietilenos/metabolismo , Ingeniería de Proteínas/métodos , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tereftalatos Polietilenos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Temperatura
16.
J Autoimmun ; 116: 102571, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33223341

RESUMEN

Guillain-Barré syndrome (GBS), including its variant Miller Fisher syndrome (MFS), is an acute peripheral neuropathy that involves autoimmune mechanisms leading to the production of autoantibodies to gangliosides; sialic acid-containing glycosphingolipids. Although association with various genetic polymorphisms in the major histocompatibility complex (MHC) is shown in other autoimmune diseases, GBS is an exception, showing no such link. No significant association was found by genome wide association studies, suggesting that GBS is not associated with common variants. To address the involvement of rare variants in GBS, we analyzed Siglec-10, a sialic acid-recognizing inhibitory receptor expressed on B cells. Here we demonstrate that two rare variants encoding R47Q and A108V substitutions in the ligand-binding domain are significantly accumulated in patients with GBS. Because of strong linkage disequilibrium, there was no patient carrying only one of them. Recombinant Siglec-10 protein containing R47Q but not A108V shows impaired binding to gangliosides. Homology modeling revealed that the R47Q substitution causes marked alteration in the ligand-binding site. Thus, GBS is associated with a rare variant of the SIGLEC10 gene that impairs ligand binding of Siglec-10. Because Siglec-10 regulates antibody production to sialylated antigens, our finding suggests that Siglec-10 regulates development of GBS by suppressing antibody production to gangliosides, with defects in its function predisposing to disease.


Asunto(s)
Gangliósidos/inmunología , Predisposición Genética a la Enfermedad , Síndrome de Guillain-Barré/inmunología , Lectinas/inmunología , Mutación Missense/inmunología , Polimorfismo de Nucleótido Simple/inmunología , Receptores de Superficie Celular/inmunología , Alelos , Secuencia de Aminoácidos , Autoanticuerpos/inmunología , Sitios de Unión/genética , Femenino , Gangliósidos/metabolismo , Frecuencia de los Genes , Genotipo , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/metabolismo , Humanos , Lectinas/genética , Lectinas/metabolismo , Masculino , Persona de Mediana Edad , Síndrome de Miller Fisher/genética , Síndrome de Miller Fisher/inmunología , Síndrome de Miller Fisher/metabolismo , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido
17.
Mol Immunol ; 114: 545-552, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31521018

RESUMEN

Antibodies possessing high affinity and specificity are desired as therapeutic reagents and biosensor materials. Such antibodies are often obtained from immunized animals through the process referred to as affinity maturation where antibody affinity increases with time after immunization. Somatic hypermutation (SHM) was shown to be involved in this process; however, structural basis of affinity maturation has not well been understood yet. We analyzed the crystal structure of a high affinity anti-(4-hydroxy-3-nitrophenyl)acetyl antibody, C6, possessing Gly at position 95 of heavy chain and 17 amino acid replacements by SHM. Here, we discuss how the amino acid residues at position 95, introduced at a junction of VH and DH gene segments during gene-recombination, as well as those replaced by SHM contribute to increasing the affinity by comparing the C6 structure with that of a germline low affinity antibody, N1G9, possessing Tyr at position 95.


Asunto(s)
Anticuerpos Monoclonales/química , Afinidad de Anticuerpos/inmunología , Glicina/química , Cadenas Pesadas de Inmunoglobulina/química , Nitrofenoles/química , Secuencia de Aminoácidos , Hipermutación Somática de Inmunoglobulina/inmunología
18.
Bioorg Med Chem ; 27(16): 3674-3681, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31300316

RESUMEN

Lithocholic acid (2) was identified as the second endogenous ligand of vitamin D receptor (VDR), though its binding affinity to VDR and its vitamin D activity are very weak compared to those of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1). 3-Acylated lithocholic acids were reported to be slightly more potent than lithocholic acid (2) as VDR agonists. Here, aiming to develop more potent lithocholic acid derivatives, we synthesized several derivatives bearing a 3-sulfonate/carbonate or 3-amino/amide substituent, and examined their differentiation-inducing activity toward human promyelocytic leukemia HL-60 cells. Introduction of a nitrogen atom at the 3-position of lithocholic acid (2) decreased the activity, but compound 6 bearing a 3-methylsulfonate group showed more potent activity than lithocholic acid (2) or its acylated derivatives. The binding of 6 to VDR was confirmed by competitive binding assay and X-ray crystallographic analysis of the complex of VDR ligand-binding domain (LBD) with 6.


Asunto(s)
Colecalciferol/análogos & derivados , Ácido Litocólico/uso terapéutico , Diferenciación Celular , Humanos , Ácido Litocólico/farmacología
19.
Neurobiol Aging ; 84: 240.e13-240.e22, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31027853

RESUMEN

Variants in the microtubule-associated protein tau (MAPT) gene cause the genetic tauopathies, a subgroup of frontotemporal dementia (FTD) disorders. Through genetic screening of 165 cases possibly associated with tauopathies, including 88 Alzheimer's disease, 26 behavioral variant FTD, eight primary progressive aphasia, nine FTD with motor neuron disease, 21 progressive supranuclear palsy, and 13 corticobasal syndrome, we identified two novel MAPT variants: a heterozygous missense variant, p.P160S, in a patient with FTD with motor neuron disease and a heterozygous insertional variant, p.K298_H299insQ, in three patients with familial progressive supranuclear palsy. The corresponding recombinant tau proteins showed reduced microtubule assembly and increased aggregation by thioflavin S assay. Exon trapping analysis showed that p.K298_H299insQ resulted in the overproduction of 4-repeat tau. In a cell-based model, p.K298_H299insQ had both a higher aggregation ability and seeding activity compared with wild-type tau. These findings indicate that both p.P160S and p.K298_H299insQ may relate to neurodegeneration.


Asunto(s)
Variación Genética , Enfermedad de la Neurona Motora/genética , Enfermedad de Parkinson/genética , Proteínas tau/genética , Progresión de la Enfermedad , Humanos
20.
Biophys Physicobiol ; 16: 80-88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923665

RESUMEN

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123-152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix "swapping". In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA