Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
2.
J Gen Intern Med ; 38(10): 2374-2382, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268779

RESUMEN

BACKGROUND: Many patients hospitalized for COVID-19 experience prolonged symptoms months after discharge. Little is known abou t patients' personal experiences recovering from COVID-19 in the United States (US), where medically underserved populations are at particular risk of adverse outcomes. OBJECTIVE: To explore patients' perspectives on the impact of COVID-19 hospitalization and barriers to and facilitators of recovery 1 year after hospital discharge in a predominantly Black American study population with high neighborhood-level socioeconomic disadvantage. DESIGN: Qualitative study utilizing individual, semi-structured interviews. PARTICIPANTS: Adult patients hospitalized for COVID-19 approximately 1 year after discharge home who were engaged in a COVID-19 longitudinal cohort study. APPROACH: The interview guide was developed and piloted by a multidisciplinary team. Interviews were audio-recorded and transcribed. Data were coded and organized into discrete themes using qualitative content analysis with constant comparison techniques. KEY RESULTS: Of 24 participants, 17 (71%) self-identified as Black, and 13 (54%) resided in neighborhoods with the most severe neighborhood-level socioeconomic disadvantage. One year after discharge, participants described persistent deficits in physical, cognitive, or psychological health that impacted their current lives. Repercussions included financial suffering and a loss of identity. Participants reported that clinicians often focused on physical health over cognitive and psychological health, an emphasis that posed a barrier to recovering holistically. Facilitators of recovery included robust financial or social support systems and personal agency in health maintenance. Spirituality and gratitude were common coping mechanisms. CONCLUSIONS: Persistent health deficits after COVID-19 resulted in downstream consequences in participants' lives. Though participants received adequate care to address physical needs, many described persistent unmet cognitive and psychological needs. A more comprehensive understanding of barriers and facilitators for COVID-19 recovery, contextualized by specific healthcare and socioeconomic needs related to socioeconomic disadvantage, is needed to better inform intervention delivery to patients that experience long-term sequelae of COVID-19 hospitalization.


Asunto(s)
COVID-19 , Adulto , Humanos , Estados Unidos , COVID-19/epidemiología , Estudios Longitudinales , Hospitalización , Alta del Paciente , Atención a la Salud , Investigación Cualitativa
4.
Crit Care Explor ; 4(12): e0800, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36479446

RESUMEN

COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

5.
Intensive Care Med ; 48(9): 1144-1155, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35833959

RESUMEN

PURPOSE: Although dozens of studies have associated vancomycin + piperacillin-tazobactam with increased acute kidney injury (AKI) risk, it is unclear whether the association represents true injury or a pseudotoxicity characterized by isolated effects on creatinine secretion. We tested this hypothesis by contrasting changes in creatinine concentration after antibiotic initiation with changes in cystatin C concentration, a kidney biomarker unaffected by tubular secretion. METHODS: We included patients enrolled in the Molecular Epidemiology of SepsiS in the ICU (MESSI) prospective cohort who were treated for ≥ 48 h with vancomycin + piperacillin-tazobactam or vancomycin + cefepime. Kidney function biomarkers [creatinine, cystatin C, and blood urea nitrogen (BUN)] were measured before antibiotic treatment and at day two after initiation. Creatinine-defined AKI and dialysis were examined through day-14, and mortality through day-30. Inverse probability of treatment weighting was used to adjust for confounding. Multiple imputation was used to impute missing baseline covariates. RESULTS: The study included 739 patients (vancomycin + piperacillin-tazobactam n = 297, vancomycin + cefepime n = 442), of whom 192 had cystatin C measurements. Vancomycin + piperacillin-tazobactam was associated with a higher percentage increase of creatinine at day-two 8.04% (95% CI 1.21, 15.34) and higher incidence of creatinine-defined AKI: rate ratio (RR) 1.34 (95% CI 1.01, 1.78). In contrast, vancomycin + piperacillin-tazobactam was not associated with change in alternative biomarkers: cystatin C: - 5.63% (95% CI - 18.19, 8.86); BUN: - 4.51% (95% CI - 12.83, 4.59); or clinical outcomes: dialysis: RR 0.63 (95% CI 0.31, 1.29); mortality: RR 1.05 (95%CI 0.79, 1.41). CONCLUSIONS: Vancomycin + piperacillin-tazobactam was associated with creatinine-defined AKI, but not changes in alternative kidney biomarkers, dialysis, or mortality, supporting the hypothesis that vancomycin + piperacillin-tazobactam effects on creatinine represent pseudotoxicity.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Combinación Piperacilina y Tazobactam , Vancomicina , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Adulto , Antibacterianos/efectos adversos , Biomarcadores , Cefepima/efectos adversos , Creatinina/sangre , Enfermedad Crítica/terapia , Cistatina C/sangre , Quimioterapia Combinada , Humanos , Ácido Penicilánico/efectos adversos , Combinación Piperacilina y Tazobactam/efectos adversos , Estudios Prospectivos , Diálisis Renal , Estudios Retrospectivos , Vancomicina/efectos adversos
6.
BMJ Open ; 12(6): e060664, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35667714

RESUMEN

INTRODUCTION: The COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalised with severe COVID-19. The Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis (ISPY COVID-19 trial) was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation and challenges of the ISPY COVID-19 trial during the first phase of trial activity from April 2020 until December 2021. METHODS AND ANALYSIS: The ISPY COVID-19 Trial is a multicentre open-label phase 2 platform trial in the USA designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID-19 Trial network includes academic and community hospitals with significant geographical diversity across the country. Enrolled patients are randomised to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes-time to recovery and mortality. The statistical design uses a Bayesian model with 'stopping' and 'graduation' criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrols to a maximum of 125 patients per arm and is compared with concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrolment and adaptation of the trial design are ongoing. ETHICS AND DISSEMINATION: ISPY COVID-19 operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: NCT04488081.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Teorema de Bayes , Humanos , Pandemias , SARS-CoV-2 , Resultado del Tratamiento
7.
Front Immunol ; 13: 834988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309299

RESUMEN

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Asunto(s)
Plaquetas/inmunología , COVID-19/inmunología , Complemento C5a/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/fisiología , Tromboembolia/inmunología , Adulto , Aminopiridinas/farmacología , Células Cultivadas , Femenino , Hospitalización , Humanos , Masculino , Morfolinas/farmacología , Activación Plaquetaria , Pirimidinas/farmacología , Índice de Severidad de la Enfermedad , Transducción de Señal , Quinasa Syk/antagonistas & inhibidores
8.
Shock ; 57(1): 41-47, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265829

RESUMEN

BACKGROUND: Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS: We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS: Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION: Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.


Asunto(s)
Metaloproteinasa 3 de la Matriz/sangre , Sepsis/mortalidad , Inhibidor Tisular de Metaloproteinasa-1/sangre , Lesión Renal Aguda/sangre , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios de Cohortes , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/sangre , Sepsis/sangre
9.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231390

RESUMEN

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Asunto(s)
COVID-19/complicaciones , Activación de Complemento/inmunología , Complemento C3b/inmunología , Complemento C4b/inmunología , Eritrocitos/inmunología , Fragmentos de Péptidos/inmunología , Insuficiencia Respiratoria/diagnóstico , Sepsis/diagnóstico , COVID-19/inmunología , COVID-19/virología , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Eritrocitos/metabolismo , Eritrocitos/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Insuficiencia Respiratoria/inmunología , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/virología , SARS-CoV-2/aislamiento & purificación , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/virología
10.
bioRxiv ; 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33972943

RESUMEN

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. ONE-SENTENCE SUMMARY: The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19.

11.
Nat Med ; 27(7): 1280-1289, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34017137

RESUMEN

Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias/inmunología , Anciano , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , COVID-19/complicaciones , COVID-19/mortalidad , Estudios de Cohortes , Femenino , Neoplasias Hematológicas/complicaciones , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunofenotipificación , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias/complicaciones , Modelos de Riesgos Proporcionales , Estudios Prospectivos , SARS-CoV-2 , Tasa de Supervivencia
12.
Lancet Digit Health ; 3(6): e340-e348, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893070

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common, but under-recognised, critical illness syndrome associated with high mortality. An important factor in its under-recognition is the variability in chest radiograph interpretation for ARDS. We sought to train a deep convolutional neural network (CNN) to detect ARDS findings on chest radiographs. METHODS: CNNs were pretrained on 595 506 radiographs from two centres to identify common chest findings (eg, opacity and effusion), and then trained on 8072 radiographs annotated for ARDS by multiple physicians using various transfer learning approaches. The best performing CNN was tested on chest radiographs in an internal and external cohort, including a subset reviewed by six physicians, including a chest radiologist and physicians trained in intensive care medicine. Chest radiograph data were acquired from four US hospitals. FINDINGS: In an internal test set of 1560 chest radiographs from 455 patients with acute hypoxaemic respiratory failure, a CNN could detect ARDS with an area under the receiver operator characteristics curve (AUROC) of 0·92 (95% CI 0·89-0·94). In the subgroup of 413 images reviewed by at least six physicians, its AUROC was 0·93 (95% CI 0·88-0·96), sensitivity 83·0% (95% CI 74·0-91·1), and specificity 88·3% (95% CI 83·1-92·8). Among images with zero of six ARDS annotations (n=155), the median CNN probability was 11%, with six (4%) assigned a probability above 50%. Among images with six of six ARDS annotations (n=27), the median CNN probability was 91%, with two (7%) assigned a probability below 50%. In an external cohort of 958 chest radiographs from 431 patients with sepsis, the AUROC was 0·88 (95% CI 0·85-0·91). When radiographs annotated as equivocal were excluded, the AUROC was 0·93 (0·92-0·95). INTERPRETATION: A CNN can be trained to achieve expert physician-level performance in ARDS detection on chest radiographs. Further research is needed to evaluate the use of these algorithms to support real-time identification of ARDS patients to ensure fidelity with evidence-based care or to support ongoing ARDS research. FUNDING: National Institutes of Health, Department of Defense, and Department of Veterans Affairs.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica , Síndrome de Dificultad Respiratoria/diagnóstico , Anciano , Algoritmos , Área Bajo la Curva , Conjuntos de Datos como Asunto , Femenino , Hospitales , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Cavidad Pleural/diagnóstico por imagen , Cavidad Pleural/patología , Enfermedades Pleurales , Radiografía , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Estudios Retrospectivos , Estados Unidos
13.
Res Sq ; 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564756

RESUMEN

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.

14.
Sci Immunol ; 5(49)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669287

RESUMEN

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified extensive induction and activation of multiple immune lineages, including T cell activation, oligoclonal plasmablast expansion, and Fc and trafficking receptor modulation on innate lymphocytes and granulocytes, that distinguished severe COVID-19 cases from healthy donors or SARS-CoV-2-recovered or moderate severity patients. We found the neutrophil to lymphocyte ratio to be a prognostic biomarker of disease severity and organ failure. Our findings demonstrate broad innate and adaptive leukocyte perturbations that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neutrófilos/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Anciano , COVID-19 , Selección Clonal Mediada por Antígenos/inmunología , Infecciones por Coronavirus/patología , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , SARS-CoV-2
15.
Science ; 369(6508)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32669297

RESUMEN

Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.


Asunto(s)
Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Subgrupos de Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Citocinas/sangre , Femenino , Humanos , Memoria Inmunológica , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Células Plasmáticas/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Tiempo , Adulto Joven
16.
bioRxiv ; 2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32511371

RESUMEN

COVID-19 has become a global pandemic. Immune dysregulation has been implicated, but immune responses remain poorly understood. We analyzed 71 COVID-19 patients compared to recovered and healthy subjects using high dimensional cytometry. Integrated analysis of ~200 immune and >30 clinical features revealed activation of T cell and B cell subsets, but only in some patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses could reach >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable to uninfected subjects. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. These analyses identified three "immunotypes" associated with poor clinical trajectories versus improving health. These immunotypes may have implications for therapeutics and vaccines.

17.
bioRxiv ; 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32511394

RESUMEN

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified broad changes in neutrophils, NK cells, and monocytes during severe COVID-19, suggesting excessive mobilization of innate lineages. We found marked activation within T and B cells, highly oligoclonal B cell populations, profound plasmablast expansion, and SARS-CoV-2-specific antibodies in many, but not all, severe COVID-19 cases. Despite this heterogeneity, we found selective clustering of severe COVID-19 cases through unbiased analysis of the aggregated immunological phenotypes. Our findings demonstrate broad immune perturbations spanning both innate and adaptive leukocytes that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation. One Sentence Summary: Broad immune perturbations in severe COVID-19.

18.
medRxiv ; 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511554

RESUMEN

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multi-organ failure characterized by respiratory insufficiency, arrhythmias, thromboembolic complications and shock. The mortality of patients hospitalized with COVID-19 is unacceptably high and new strategies are urgently needed to rapidly identify and treat patients at risk for organ failure. Clinical epidemiologic studies demonstrate that vulnerability to organ failure is greatest after viral clearance from the upper airway, which suggests that dysregulation of the host immune response is a critical mediator of clinical deterioration and death. Autopsy and pre-clinical evidence implicate aberrant complement activation in endothelial injury and organ failure. A potential therapeutic strategy warranting investigation is to inhibit complement, with case reports of successful treatment of COVID-19 with inhibitors of complement. However, this approach requires careful balance between the host protective and potential injurious effects of complement activation, and biomarkers to identify the optimal timing and candidates for therapy are lacking. Here we report the presence of complement activation products on circulating erythrocytes from hospitalized COVID-19 patients using flow cytometry. These findings suggest that novel erythrocyte-based diagnostics provide a method to identify patients with dysregulated complement activation.

19.
Chest ; 157(1): 67-76, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622590

RESUMEN

BACKGROUND: Critically ill patients who develop ARDS have substantial associated morbidity and mortality. Circulating mitochondrial DNA (mtDNA) released during critical illness causes endothelial dysfunction and lung injury in experimental models. This study hypothesized that elevated plasma mtDNA is associated with ARDS in critically ill patients with trauma and sepsis. METHODS: Plasma mtDNA concentrations were measured at ED presentation and approximately 48 h later in separate prospective cohorts of critically ill patients with trauma and sepsis. ARDS was classified according to the Berlin definition. The association of mtDNA with ARDS was tested by using multivariable logistic regression, adjusted for covariates previously shown to contribute to ARDS risk in each population. RESULTS: ARDS developed in 41 of 224 (18%) trauma patients and in 45 of 120 (38%) patients with sepsis. Forty-eight-hour mtDNA levels were significantly associated with ARDS (trauma: OR, 1.58/log copies/µL; 95% CI, 1.14-2.19 [P = .006]; sepsis: OR, 1.52/log copies/µL; 95% CI, 1.12-2.06 [P = .007]). Plasma mtDNA on presentation was not significantly associated with ARDS in either cohort. In patients with sepsis, 48-h mtDNA was more strongly associated with ARDS among those with a nonpulmonary infectious source (OR, 2.20/log copies/µL; 95% CI, 1.36-3.55 [P = .001], n = 69) than those with a pulmonary source (OR, 1.04/log copies/µL; 95% CI, 0.68-1.59 [P = .84], n = 51; P = .014 for interaction). CONCLUSIONS: Plasma mtDNA levels were associated with incident ARDS in two critical illness populations. Given supportive preclinical data, our findings suggest a potential link between circulating mtDNA and lung injury and merit further investigation as a potentially targetable mediator of ARDS.


Asunto(s)
ADN Mitocondrial/sangre , Síndrome de Dificultad Respiratoria/sangre , Sepsis/sangre , Heridas y Lesiones/sangre , APACHE , Adulto , Biomarcadores/sangre , Comorbilidad , Enfermedad Crítica , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos
20.
Am J Respir Crit Care Med ; 201(1): 47-56, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487195

RESUMEN

Rationale: Acute respiratory distress syndrome (ARDS) lacks known causal biomarkers. Plasma concentrations of sRAGE (soluble receptor for advanced glycation end products) strongly associate with ARDS risk. However, whether plasma sRAGE contributes causally to ARDS remains unknown.Objectives: Evaluate plasma sRAGE as a causal intermediate in ARDS by Mendelian randomization (MR), a statistical method to infer causality using observational data.Methods: We measured early plasma sRAGE in two critically ill populations with sepsis. The cohorts were whole-genome genotyped and phenotyped for ARDS. To select validated genetic instruments for MR, we regressed plasma sRAGE on genome-wide genotypes in both cohorts. The causal effect of plasma sRAGE on ARDS was inferred using the top variants with significant associations in both populations (P < 0.01, R2 > 0.02). We applied the inverse variance-weighted method to obtain consistent estimates of the causal effect of plasma sRAGE on ARDS risk.Measurements and Main Results: There were 393 European and 266 African ancestry patients in the first cohort and 843 European ancestry patients in the second cohort. Plasma sRAGE was strongly associated with ARDS risk in both populations (odds ratio, 1.86; 95% confidence interval [1.54-2.25]; 2.56 [2.14-3.06] per log increase). Using genetic instruments common to both populations, plasma sRAGE had a consistent causal effect on ARDS risk with a ß estimate of 0.50 (95% confidence interval [0.09-0.91] per log increase).Conclusions: Plasma sRAGE is genetically regulated during sepsis, and MR analysis indicates that increased plasma sRAGE leads to increased ARDS risk, suggesting plasma sRAGE acts as a causal intermediate in sepsis-related ARDS.


Asunto(s)
Biomarcadores/sangre , Receptor para Productos Finales de Glicación Avanzada/genética , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/fisiopatología , Sepsis/sangre , Sepsis/genética , Adulto , Anciano , Anciano de 80 o más Años , Población Negra/genética , Estudios de Cohortes , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Sepsis/fisiopatología , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...