Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38248671

RESUMEN

The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom Nitzschia sp. S5 were optimised to obtain a high biomass concentration. The effect of main macronutrients on growth kinetics and cell composition was also studied. Silicon had the most significant effect on diatom growth during batch cultivation. The concentration of biomass increased 5.45-fold (0.49 g L-1) at 1 mM silicon concentration in modified growth medium compared to the original Guillard f/2 medium. Optimisation of silicon, nitrogen, and phosphorus quantities and ratios further increased biomass concentration. The molar ratio of Si:N:P = 7:23:1 mol:mol:mol yielded the highest biomass concentration of 0.73 g L-1. Finally, the fed-batch diatom cultivation of diatom using an optimised Guillard f/2 growth medium with four additions of concentrated macronutrient solution resulted in 1.63 g L-1 of microalgal biomass. The proteins were the most abundant macromolecules in microalgal biomass, with a lower content of carbohydrates and lipids under all studied conditions.


Asunto(s)
Diatomeas , Microalgas , Biomasa , Silicio , Suplementos Dietéticos , Nitrógeno , Fósforo
2.
Molecules ; 27(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35209036

RESUMEN

Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h-1), had biomass productivity of 33.98 ± 0.02 mg L-1 day-1. Proteins were the most abundant macromolecule in the biomass (32.83-57.94%, g g-1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.


Asunto(s)
Antiinfecciosos , Antioxidantes , Aspergillus niger/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Biomasa , Candida/crecimiento & desarrollo , Chlorophyta , Ácidos Grasos Insaturados/química , Microalgas , Pigmentos Biológicos , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Ácidos Grasos Insaturados/aislamiento & purificación , Ácidos Grasos Insaturados/farmacología , Microalgas/química , Microalgas/crecimiento & desarrollo , Océanos y Mares , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Pigmentos Biológicos/farmacología
3.
J Fungi (Basel) ; 7(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34829221

RESUMEN

Microbial lipids have similar fatty acid composition to plant oils, and therefore, are considered as an alternative feedstock for biodiesel production. Oleaginous yeasts accumulate considerable amounts of lipids intracellularly during growth on low-cost renewable feedstocks such as lignocellulosic biomass. In this study, we cultivated yeast Trichosporon oleaginosus on hydrolysate of alkaline pretreated corn cobs. Different process configurations were evaluated and compared, including separate hydrolysis and fermentation (SHF) with cellulase recycle and simultaneous saccharification and fermentation (SSF) in batch and fed-batch mode. At low enzyme loading, the highest lipid concentration of 26.74 g L-1 was reached in fed-batch SSF fed with 2.5% (g g-1) substrate. Batch SHF was conducted for four rounds with recycling the cellulase adsorbed on unhydrolyzed lignocellulosic biomass. Thirty percent of cellulase saving was achieved for rounds 2-4 without compromising productivity and lipid yield. The addition of Tween 80 to lignocellulosic slurry improved the hydrolysis rate of structural carbohydrates in pretreated lignocellulosic biomass. Furthermore, supplementing the growth medium with Tween 80 improved lipid yield and productivity without affecting yeast growth. Oleaginous yeast T. oleaginosus is a promising strain for the sustainable and efficient production of lipids from renewable lignocellulosic feedstock.

4.
Food Technol Biotechnol ; 59(4): 387-412, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35136365

RESUMEN

The underutilized biomass and different organic waste streams are nowadays in the focus of research for renewable energy production due to the effusive use of fossil fuels and greenhouse gas emission. In addition, one of the major environmental problems is also a constant increase of the number of organic waste streams. In a lot of countries, sustainable waste management, including waste prevention and reduction, has become a priority as a means to reduce pollution and greenhouse gas emission. Application of biogas technology is one of the promising methods to provide solutions for both actual energy-related and environmental problems. This review aims to present conventional and novel biogas production systems, as well as purification and upgrading technologies, nowadays applicable on a large scale, with a special focus on the CO2 and H2S removal. It also gives an overview of feedstock and the parameters important for biogas production, together with digestate utilization and application of molecular biology in order to improve the biogas production.

5.
Food Technol Biotechnol ; 56(3): 289-311, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30510474

RESUMEN

Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.

6.
Food Technol Biotechnol ; 56(2): 152-173, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30228791

RESUMEN

Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the 'food or fuel' concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...