Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(12): 2108-2124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857891

RESUMEN

Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.


Asunto(s)
Planarias , Animales , Planarias/genética , Planarias/metabolismo , Transcriptoma , Filogenia , ARN
2.
Commun Biol ; 6(1): 518, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179375

RESUMEN

Luminescent reporters are due to their intrinsically high signal-to-noise ratio a powerful labelling tool for microscopy and macroscopic in vivo imaging in biomedical research. However, luminescence signal detection requires longer exposure times than fluorescence imaging and is consequently less suited for applications requiring high temporal resolution or throughput. Here we demonstrate that content aware image restoration can drastically reduce the exposure time requirements in luminescence imaging, thus overcoming one of the major limitations of the technique.


Asunto(s)
Luminiscencia , Microscopía , Microscopía/métodos
3.
Development ; 146(17)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511248

RESUMEN

Planarians are a group of flatworms. Some planarian species have remarkable regenerative abilities, which involve abundant pluripotent adult stem cells. This makes these worms a powerful model system for understanding the molecular and evolutionary underpinnings of regeneration. By providing a succinct overview of planarian taxonomy, anatomy, available tools and the molecular orchestration of regeneration, this Primer aims to showcase both the unique assets and the questions that can be addressed with this model system.


Asunto(s)
Modelos Animales , Modelos Biológicos , Planarias/genética , Regeneración/fisiología , Células Madre Adultas/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Filogenia , Planarias/anatomía & histología , Células Madre Pluripotentes/metabolismo
4.
Biol Open ; 5(2): 140-53, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26787680

RESUMEN

The transcription factor Nkx2.5 and the intermediate filament protein desmin are simultaneously expressed in cardiac progenitor cells during commitment of primitive mesoderm to the cardiomyogenic lineage. Up-regulation of Nkx2.5 expression by desmin suggests that desmin may contribute to cardiogenic commitment and myocardial differentiation by directly influencing the transcription of the nkx2.5 gene in cardiac progenitor cells. Here, we demonstrate that desmin activates transcription of nkx2.5 reporter genes, rescues nkx2.5 haploinsufficiency in cardiac progenitor cells, and is responsible for the proper expression of Nkx2.5 in adult cardiac side population stem cells. These effects are consistent with the temporary presence of desmin in the nuclei of differentiating cardiac progenitor cells and its physical interaction with transcription factor complexes bound to the enhancer and promoter elements of the nkx2.5 gene. These findings introduce desmin as a newly discovered and unexpected player in the regulatory network guiding cardiomyogenesis in cardiac stem cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...