Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(11): 12639-12647, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31898457

RESUMEN

Porous tin dioxide is an important low-cost semiconductor applied in electronics, gas sensors, and biosensors. Here, we present a versatile template-assisted synthesis of nanostructured tin dioxide thin films using cellulose nanocrystals (CNCs). We demonstrate that the structural features of CNC-templated tin dioxide films strongly depend on the precursor composition. The precursor properties were studied by using low-temperature nuclear magnetic resonance spectroscopy of tin tetrachloride in solution. We demonstrate that it is possible to optimize the precursor conditions to obtain homogeneous precursor mixtures and therefore highly porous thin films with pore dimensions in the range of 10-20 nm (ABET = 46-64 m2 g-1, measured on powder). Finally, by exploiting the high surface area of the material, we developed a resistive gas sensor based on CNC-templated tin dioxide. The sensor shows high sensitivity to carbon monoxide (CO) in ppm concentrations and low cross-sensitivity to humidity. Most importantly, the sensing kinetics are remarkably fast; both the response to the analyte gas and the signal decay after gas exposure occur within a few seconds, faster than in standard SnO2-based CO sensors. This is attributed to the high gas accessibility of the very thin porous film.

2.
J Am Chem Soc ; 138(6): 1860-7, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26743183

RESUMEN

A sol-gel method for the synthesis of semiconducting FeCrAl oxide photocathodes for solar-driven hydrogen production was developed and applied for the production of meso- and macroporous layers with the overall stoichiometry Fe0.84Cr1.0Al0.16O3. Using transmission electron microscopy and energy-dispersive X-ray spectroscopy, phase separation into Fe- and Cr-rich phases was observed for both morphologies. Compared to prior work and to the mesoporous layer, the macroporous FeCrAl oxide photocathode had a significantly enhanced photoelectrolysis performance, even at a very early onset potential of 1.1 V vs RHE. By optimizing the macroporous electrodes, the device reached current densities of up to 0.68 mA cm(-2) at 0.5 V vs RHE under AM 1.5 with an incident photon-to-current efficiency (IPCE) of 28% at 400 nm without the use of catalysts. Based on transient measurements, this performance increase could be attributed to an improved collection efficiency. At a potential of 0.75 V vs RHE, an electron transfer efficiency of 48.5% was determined.

3.
ACS Appl Mater Interfaces ; 8(7): 4600-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26771519

RESUMEN

Surface oxidation of quantum dots (QDs) is one of the biggest challenges in quantum dot-sensitized solar cells (QDSCs), because it introduces surface states that enhance electron-hole recombination and degrade device performance. Protection of QDs from surface oxidation by passivating the surface with organic or inorganic layers can be one way to overcome this issue. In this study, solid-state QDSCs with a PbS QD absorber layer were prepared from thin mesoporous TiO2 layers by the successive ionic layer adsorption/reaction (SILAR) method. Spiro-OMeTAD was used as the organic p-type hole transporting material (HTM). The effects on the solar cell performance of passivating the surface of the PbS QDs with the tripeptide l-glutathione (GSH) were investigated. Current-voltage characteristics and external quantum efficiency measurements of the solar cell devices showed that GSH-treatment of the QD-sensitized TiO2 electrodes more than doubled the short circuit current and conversion efficiency. Impedance spectroscopy, intensity-modulated photovoltage and photocurrent spectroscopy analysis of the devices revealed that the enhancement in solar cell performance of the GSH-treated cells originates from improved charge injection from PbS QDs into the conduction band of TiO2. Time-resolved photoluminescence decay measurements show that passivation of the surface of QDs with GSH ligands increases the exciton lifetime in the QDs.

4.
Inorg Chem ; 54(3): 1129-35, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25549021

RESUMEN

We report the formation of porous iron oxide (hematite) nanostructures via sol-gel transformations of molecular precursors in the confined space of self-organized nanocrystalline cellulose (NCC) used as a shape-persistent template. The obtained structures are highly porous α-Fe(2)O(3) (hematite) morphologies with a well-defined anisotropic porosity. The character of the porous nanostructure depends on the iron salt used as the precursor and the heat treatment. Moreover, a postsynthetic hydrothermal treatment of the NCC/iron salt composites strongly affects the crystal growth as well as the porous nanomorphology of the obtained hematite scaffolds. We demonstrate that the hydrothermal treatment alters the crystallization mechanism of the molecular iron precursors, which proceeds via the formation of anisotropic iron oxyhydroxide species. The nanocellulose templating technique established here enables the straightforward fabrication of a variety of mesoporous crystalline iron oxide scaffolds with defined porous structure and is particularly attractive for the processing of porous hematite films on different substrates.

5.
J Am Chem Soc ; 136(16): 5930-7, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24533864

RESUMEN

The tunable porosity of titania thin films is a key factor for successful applications in photovoltaics, sensing, and photocatalysis. Here, we report on nanocrystalline cellulose (NCC) as a novel shape-persistent templating agent enabling the straightforward synthesis of mesoporous titania thin films. The obtained structures are highly porous anatase morphologies having well-defined, narrow pore size distributions. By varying the titania-to-template ratio, it is possible to tune the surface area, pore size, pore anisotropy, and dimensions of titania crystallites in the films. Moreover, a post-treatment at high humidity and subsequent slow template removal can be used to achieve pore widening; this treatment is also beneficial for the multilayer deposition of thick films. The resulting homogeneous transparent films can be directly spin- or dip- coated on glass, silicon, and transparent conducting oxide (TCO) substrates. The mesoporous titania films show very high activity in the photocatalytic NO conversion and in the degradation of 4-chlorophenol. Furthermore, the films can be successfully applied as anodes in dye-sensitized solar cells.


Asunto(s)
Celulosa/química , Nanopartículas/química , Titanio/química , Clorofenoles/química , Suministros de Energía Eléctrica , Óxido Nítrico/química , Porosidad , Energía Solar
6.
Nanoscale ; 3(3): 1234-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21258714

RESUMEN

We have developed a new facile procedure for manufacturing crystalline thin films of SnO2 with a uniform mesoporous architecture and full crystallinity of the walls. The procedure is based on the evaporation-induced self-assembly (EISA) of prehydrolyzed tin oxide precursor directed by a commercially available Pluronic polymer. The formation of the tin oxide precursor, which can be self-assembled into a mesoporous structure, is achieved by an addition of ammonium hydroxide to a tin tetrachloride solution. The relative concentration of ammonium hydroxide as well as the duration and temperature of the hydrolysis reaction influence significantly the properties of hydrolyzed tin oxide species and the mesostructure assembled from them. The films coated from these precursor solutions and calcined at 300 °C to 400 °C exhibit a well-developed worm-like porosity with a wall to wall distance of ca. 18 nm, a surface area of up to 50 cm2 cm(-2) (corresponding to 55±5 m2 g(-1)), and high crystallinity.


Asunto(s)
Cristalización/métodos , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos de Estaño/síntesis química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Transición de Fase , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...