RESUMEN
A series of 11-substituted 9-hydroxy-3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones 3.1-3.13 were synthesized via hetero-Diels-Alder reaction of 5-ene-4-thioxo-2-thiazolidinones and 5-hydroxy-1,4-naphthoquinone (juglone). The structure of newly synthesized compounds was established by means of spectral data and a single-crystal X-ray diffraction analysis. The synthesized compounds were tested on a panel of cell lines representing different types of cancer as well as normal and pseudonormal cells and peripheral human blood lymphocytes. Compound 3.10 was found to be the most active derivative, exhibiting a cytotoxic effect similar to doxorubicin's one (IC50 ranged from 0.6 to 5.98 µM), but less toxic to normal and pseudonormal cells. All synthesized compounds were able to interact with DNA, although their anticancer activity did not correlate with the potency of interaction with DNA. The status of p53 in colorectal cancer cells correlated with the activity of the synthesized derivatives 3.1, 3.7, and 3.10. Compound 3.10 did not have an acute toxic effect on the body of С57BL/6 mice, unlike the well-known anticancer drug doxorubicin, which was used as a positive control. The injection of 3.10 (20 mg/kg) to mice had no effect on the counts of leukocytes, erythrocytes, platelets and hemoglobin level in their blood, in contrast to doxorubicin, which caused anemia and leukopenia, indicating bio-tolerance of 3.10in vivo.
Asunto(s)
Antineoplásicos , Naftoquinonas , Humanos , Animales , Ratones , Tiazoles/química , Antineoplásicos/química , Naftoquinonas/farmacología , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Proliferación Celular , Línea Celular TumoralRESUMEN
A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were established by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI protocols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on HCT116wt, and it may be an interesting feature of the mechanism action.
Asunto(s)
Antineoplásicos , Naftoquinonas , Tiazoles/química , Proteína p53 Supresora de Tumor , Naftoquinonas/química , Antineoplásicos/química , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.
Asunto(s)
Antineoplásicos , Leucemia , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Ácido Benzoico/farmacología , Línea Celular Tumoral , Proliferación Celular , ADN/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ésteres/farmacología , Humanos , Estructura Molecular , Piridinas/farmacología , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacologíaRESUMEN
A series of novel pyrrolidinedione-thiazolidinones was synthesized and subjected to physico-chemical characteristics. They were screened on a panel of cell lines representing different types of cancer, as well as normal human keratynocytes and lymphocytes of peripheral human blood. High antiproliferative activity of 1-(4-chlorophenyl)- and 1-(4-hydroxyphenyl)-3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}-1-(4-hydroxyphenyl)-pyrrolidine-2,5-diones 2a and 2b was revealed along with satisfactory cytotoxicity characteristics. Human T-leukemia cells of Jurkat line were the most sensitive to the action of 2a, 2b and 5-(2-allyloxybenzylidene) derivative 2f. At the same time, synthesized compounds demonstrated low toxicity towards normal human keratinocytes of HaCaT line and mitogen-activated lymphocytes of peripheral blood of healthy human donor. The compounds 2а and 2b demonstrated high selectivity (SI >9.2) towards studied leukemia, lung, breast, cervical, colon carcinoma and glioblastoma cells. Compounds 2a, 2b induced mitochondria-dependent apoptosis in treated Jurkat T-cells via increasing the level of proapoptotic Bax and EndoG proteins, and decreasing the level of antiapoptotic Bcl-2 protein. The cytotoxic action of compounds 2a, 2b towards Jurkat T-cells was associated with the single-strand brakes in DNA and its inter-nucleosomal fragmentation, without significant intercalation of these compounds into the DNA molecule. Compounds 2a, 2b did not induce significant DNA damage and changes in morphology of mitogen-activated lymphocytes of peripheral blood of healthy donor. Altogether, these data demonstrated anticancer potential of novel hybrid pyrrolidinedione-thiazolidinones which were relatively non-toxic for normal human cells.
Asunto(s)
Antineoplásicos , Leucemia , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitógenos/farmacología , Succinimidas/farmacologíaRESUMEN
OBJECTIVES: The objective of this study was to test whether pyruvate and glutamine affect the ethanol and cholecystokinin (CCK) effects on the mitochondrial function, viability, and morphology of rat pancreatic acini. METHODS: Respiration was measured with Clark oxygen electrode. Mitochondrial membrane potential, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), cell morphology, and viability were studied with fluorescence microscopy. RESULTS: In vitro, CCK (0.1 nM) caused pyruvate-dependent stimulation of basal and uncoupled respiration, and the effects were abolished by ethanol (20 mM). The combination of ethanol with CCK (2 hours) caused necrosis of approximately 40% acinar cells in medium with glucose, but not with pyruvate and/or glutamine. Cholecystokinin (10 nM) or ethanol with 0.1 nM CCK caused plasma membrane blebbing not related to apoptosis only when both glutamine and pyruvate were present. Glutamine, but not pyruvate, decreased NAD(P)H level and prevented the effects of ethanol with CCK on mitochondrial membrane potential and NAD(P)H, but, in combination with CCK and ethanol, decreased the uncoupled respiration. In vivo, the combination of ethanol (4 g/kg) and CCK (20 pmol/kg) suppressed basal and uncoupled respiration and caused acinar cell blebbing, but not necrosis. CONCLUSIONS: The lack of sufficient substrate supply in vitro makes pancreatic acinar cells susceptible to necrosis caused by ethanol and CCK in clinically relevant concentrations.
Asunto(s)
Células Acinares/efectos de los fármacos , Colecistoquinina/farmacología , Etanol/farmacología , Glutamina/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Pirúvico/metabolismo , Células Acinares/metabolismo , Amilasas/sangre , Amilasas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Etanol/sangre , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Fluorescente , Mitocondrias/metabolismo , Necrosis , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Páncreas/citología , Páncreas/metabolismo , Ratas WistarRESUMEN
The aim of the present study was to investigate the antiproliferative and proapoptotic actions of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide derivative (compound 5) in glioma cells in comparison with the actions of temozolomide (TMZ) and doxorubicin (Dox), used as positive controls. The antiproliferative activity of the compound 5, TMZ, and Dox on human glioblastoma U251 and human glioblastoma multiform T98G cells was measured using the MTT test. Western blot analysis, fluorescent microscopy, agarose gel retardation assay, flow cytometric analysis, and the DNA comet assay under alkaline conditions were carried out to study the effect of compound 5 on U251 cells. This compound showed ~20 times higher cytotoxicity toward U251 and T98G cells compared with the effects of TMZ and approximately two times higher activity than that of the Dox. Compound 5 induced apoptosis in U251 cells by PARP1 and caspase 3 cleavage mechanisms, also inducing an increase in the level of Bax and Bim proapoptotic proteins and a decrease in the level of phosho-ERK1/2 kinase. The cytotoxicity of compound 5 was associated with an increase in the production of the hydrogen peroxide and the formation of DNA single-strand breaks. This compound 5 did not intercalate into a DNA molecule. Thus, the novel thiazole derivative (compound 5) proved to be a potential antiglioma drug that showed much higher cytotoxic action on human glioma cells compared with the effects of TMZ and Dox. Its cytotoxicity is associated with apoptosis induction, production of the reactive oxygen species, and formation of DNA single-strand breaks without significant DNA intercalation.