Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Front Cardiovasc Med ; 10: 1206541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534280

RESUMEN

The burden of atherosclerotic cardiovascular disease contributes to a large proportion of morbidity and mortality, globally. Vaccination against atherosclerosis has been proposed for over 20 years targeting different mediators of atherothrombosis; however, these have not been adequately evaluated in human clinical trials to assess safety and efficacy. Inflammation is a driver of atherosclerosis, but inflammatory mediators are essential components of the immune response. Only pathogenic forms of sTNFR2 are acted upon while preserving the membrane-bound (wild-type) TNFR2 contributions to a non-pathogenic immune response. We hypothesize that the inhibition of sTNRF2 will be more specific and offer long-term treatment options. Here we describe pre-clinical findings of an sTNFR2-targeting peptide vaccine (AtheroVax™) in a mouse model. The multiple pathways to synthesis of the soluble TNFRII receptor (sTNFRII) were identified as sTNFRII(PC), sTNFRII(Δ7), and sTNFRII(Δ7,9). The sTNFRII(Δ7) peptide, NH2-DFALPVEKPLCLQR-COOH is specific to sTNFR2 based on an mRNA splice-variant in which exon 6 is joined to exon 8. The role of sTNFRII(Δ7) as a mediator of prolonged TNFα activity by preventing degradation and clearance was investigated. Inflammation is a critical driver of onset, progression and expansion of atherosclerosis. The TNFα ligand represents a driver of inflammation that is mediated by a splice variant of TNFR2, referred to as sTNFRII(Δ7). The multiple forms of TNFRII, both membrane bound and soluble, are associated with distinctly different phenotypes. sTNFRII(PC) and sTNFRII(Δ7) are not equivalent to etanercept because they lack a clearance mechanism. The unique peptide associated with sTNFRII(Δ7) contains a linear B-cell epitope with amino acids from both exon 6 and exon 8 supporting the vaccine design. Animal studies to evaluate the vaccine are ongoing, and results will be forthcoming. We describe a peptide vaccine targeting sTNFR2 in limiting the progression of atherosclerosis. A therapeutic vaccine limiting the progression of atherosclerosis will greatly contribute to the reduction in morbidity and mortality from cardiovascular disease. It is likely the vaccine will be used in combination with the current standards of care and lifestyle modifications.

2.
PLoS Negl Trop Dis ; 16(5): e0010081, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533188

RESUMEN

Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61-68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure.


Asunto(s)
Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Aerosoles , Animales , Encéfalo , Modelos Animales de Enfermedad , Encefalomielitis Equina/patología , Caballos , Macaca fascicularis , ARN Viral , Médula Espinal/patología
3.
PLoS Negl Trop Dis ; 16(3): e0010220, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259154

RESUMEN

The Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) began development of a broad-spectrum antiviral countermeasure against deliberate use of high-consequence viral hemorrhagic fevers (VHFs) in 2016. The effort featured comprehensive preclinical research, including laboratory testing and rapid advancement of lead molecules into nonhuman primate (NHP) models of Ebola virus disease (EVD). Remdesivir (GS-5734, Veklury, Gilead Sciences) was the first small molecule therapeutic to successfully emerge from this effort. Remdesivir is an inhibitor of RNA-dependent RNA polymerase, a viral enzyme that is essential for viral replication. Its robust potency and broad-spectrum antiviral activity against certain RNA viruses including Ebola virus and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) led to its clinical evaluation in randomized, controlled trials (RCTs) in human patients during the 2018 EVD outbreak in the Democratic Republic of the Congo (DRC) and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic today. Remdesivir was recently approved by the US Food and Drug Administration (FDA) for the treatment of COVID-19 requiring hospitalization. Substantial gaps remain in improving the outcomes of acute viral infections for patients afflicted with both EVD and COVID-19, including how to increase therapeutic breadth and strategies for the prevention and treatment of severe disease. Combination therapy that joins therapeutics with complimentary mechanisms of action appear promising, both preclinically and in RCTs. Importantly, significant programmatic challenges endure pertaining to a clear drug and biological product development pathway for therapeutics targeting biodefense and emerging pathogens when human efficacy studies are not ethical or feasible. For example, remdesivir's clinical development was facilitated by outbreaks of Ebola and SARS-CoV-2; as such, the development pathway employed for remdesivir is likely to be the exception rather than the rule. The current regulatory licensure pathway for therapeutics targeting rare, weaponizable VHF agents is likely to require use of FDA's established Animal Rule (21 CFR 314.600-650 for drugs; 21 CFR 601.90-95 for biologics). The FDA may grant marketing approval based on adequate and well-controlled animal efficacy studies when the results of those studies establish that the drug is safe and likely to produce clinical benefit in humans. In practical terms, this is anticipated to include a series of rigorous, well-documented, animal challenge studies, to include aerosol challenge, combined with human safety data. While small clinical studies against naturally occurring, high-consequence pathogens are typically performed where possible, approval for the therapeutics currently under development against biodefense pathogens will likely require the Animal Rule pathway utilizing studies in NHPs. We review the development of remdesivir as illustrative of the effort that will be needed to field future therapeutics against highly lethal, infectious agents.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Desarrollo de Medicamentos , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Contramedidas Médicas , Infecciones por Virus ARN/tratamiento farmacológico , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Humanos , Modelos Animales , Primates , Estados Unidos , United States Food and Drug Administration/legislación & jurisprudencia
4.
Sci Transl Med ; 14(631): eabi5229, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138912

RESUMEN

Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Anticuerpos Monoclonales , Encéfalo , Humanos , Macaca mulatta , Recurrencia , Sobrevivientes
5.
Sci Rep ; 11(1): 19458, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593911

RESUMEN

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/farmacología , Administración Intravenosa , Aerosoles , Alanina/administración & dosificación , Alanina/farmacología , Animales , Antivirales/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Fiebre Hemorrágica Ebola/sangre , Estimación de Kaplan-Meier , Hígado/efectos de los fármacos , Hígado/virología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Macaca mulatta , Masculino , Distribución Aleatoria , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/virología , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico
10.
Sci Rep ; 11(1): 4722, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633318

RESUMEN

CYP3A5 is the primary CYP3A subfamily enzyme expressed in the human kidney and its aberrant expression may contribute to a broad spectrum of renal disorders. Pharmacogenetic studies have reported inconsistent linkages between CYP3A5 expression and hypertension, however, most investigators have considered CYP3A5*1 as active and CYP3A5*3 as an inactive allele. Observations of gender specific differences in CYP3A5*3/*3 protein expression suggest additional complexity in gene regulation that may underpin an environmentally responsive role for CYP3A5 in renal function. Reconciliation of the molecular mechanism driving conditional restoration of functional CYP3A5*3 expression from alternatively spliced transcripts, and validation of a morpholino-based approach for selectively suppressing renal CYP3A5 expression, is the focus of this work. Morpholinos targeting a cryptic splice acceptor created by the CYP3A5*3 mutation in intron 3 rescued functional CYP3A5 expression in vitro, and salt-sensitive cellular mechanisms regulating splicing and conditional expression of CYP3A5*3 transcripts are reported. The potential for a G-quadruplex (G4) in intron 3 to mediate restored splicing to exon 4 in CYP3A5*3 transcripts was also investigated. Finally, a proximal tubule microphysiological system (PT-MPS) was used to evaluate the safety profile of morpholinos in proximal tubule epithelial cells, highlighting their potential as a therapeutic platform for the treatment of renal disease.


Asunto(s)
Citocromo P-450 CYP3A/genética , Descubrimiento de Drogas , Enfermedades Renales/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología , Línea Celular , G-Cuádruplex/efectos de los fármacos , Células HEK293 , Humanos , Enfermedades Renales/genética , Morfolinos/genética , Morfolinos/farmacología , Mutación/efectos de los fármacos , Oligonucleótidos Antisentido/genética
11.
Lancet Infect Dis ; 20(9): e231-e237, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32563280

RESUMEN

The PALM trial in the Democratic Republic of the Congo identified a statistically significant survival benefit for two monoclonal antibody-based therapeutics in the treatment of acute Ebola virus disease; however, substantial gaps remain in improving the outcomes of acute Ebola virus disease and for the survivors. Ongoing efforts are needed to develop more effective strategies, particularly for individuals with severe disease, for prevention and treatment of viral persistence in immune-privileged sites, for optimisation of post-exposure prophylaxis, and to increase therapeutic breadth. As antibody-based approaches are identified and advanced, promising small-molecule antivirals currently in clinical stage development should continue to be evaluated for filovirus diseases, with consideration of their added value in combination approaches with bundled supportive care, their penetration in tissues of interest, the absence of interaction with glycoprotein-based vaccines, and filoviral breadth.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/terapia , Humanos , Profilaxis Posexposición
13.
Drug Metab Dispos ; 48(4): 272-287, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980501

RESUMEN

The human genome encodes 48 nuclear receptor (NR) genes, whose translated products transform chemical signals from endo-xenobiotics into pleotropic RNA transcriptional profiles that refine drug metabolism. This review describes the remarkable diversification of the 48 human NR genes, which are potentially processed into over 1000 distinct mRNA transcripts by alternative splicing (AS). The average human NR expresses ∼21 transcripts per gene and is associated with ∼7000 single nucleotide polymorphisms (SNPs). However, the rate of SNP accumulation does not appear to drive the AS process, highlighting the resilience of NR genes to mutation. Here we summarize the altered tissue distribution/function of well characterized NR splice variants associated with human disease. We also describe a cassette exon visualization pictograph methodology for illustrating the location of modular, cassette exons in genes, which can be skipped in-frame, to facilitate the study of their functional relevance to both drug metabolism and NR evolution. We find cassette exons associated with all of the functional domains of NR genes including the DNA and ligand binding domains. The matrix of inclusion or exclusion for functional domain-encoding cassette exons is extensive and capable of significant alterations in cellular phenotypes that modulate endo-xenobiotic metabolism. Exon inclusion options are differentially distributed across NR subfamilies, suggesting group-specific conservation of resilient functionalities. A deeper understanding of this transcriptional plasticity expands our understanding of how chemical signals are refined and mediated by NR genes. This expanded view of the NR transcriptome informs new models of chemical toxicity, disease diagnostics, and precision-based approaches to personalized medicine. SIGNIFICANCE STATEMENT: This review explores the impact of alternative splicing (AS) on the human nuclear receptor (NR) superfamily and highlights the dramatic expansion of more than 1000 potential transcript variants from 48 individual genes. Xenobiotics are increasingly recognized for their ability to perturb gene splicing events, and here we explore the differential sensitivity of NR genes to AS and chemical exposure. Using the cassette exon visualization pictograph methodology, we have documented the conservation of splice-sensitive, modular, cassette exon domains among the 48 human NR genes, and we discuss how their differential expression profiles may augment cellular resilience to oxidative stress and fine-tune adaptive, metabolic responses to endo-xenobiotic exposure.


Asunto(s)
Empalme Alternativo , Receptores Citoplasmáticos y Nucleares/genética , Transcriptoma/genética , Xenobióticos/metabolismo , Exones/genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , ARN Mensajero/metabolismo , Xenobióticos/farmacología
14.
Toxicol Appl Pharmacol ; 364: 55-67, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552932

RESUMEN

Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.


Asunto(s)
Empalme Alternativo , Neoplasias del Colon/genética , Sistema Enzimático del Citocromo P-450/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Receptores de Calcitriol/genética , Células CACO-2 , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Citocromo P-450 CYP3A/biosíntesis , Citocromo P-450 CYP3A/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática , Exones , Terapia Genética/métodos , Humanos , Ligandos , Masculino , Oligonucleótidos Antisentido/farmacología , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilasa/biosíntesis , Vitamina D3 24-Hidroxilasa/genética
15.
Oncotarget ; 9(55): 30568-30586, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30093970

RESUMEN

Ewing's sarcoma treatment failures are associated with high mortality indicating a need for new therapeutic approaches. We used a k-mer counting approach to identify cancer-specific mRNA transcripts in 3 Ewing's Family Tumor (EFT) cell lines not found in the normal human transcriptome. Phosphorodiamidate morpholino oligomers targeting six EFT-specific transcripts were evaluated for cytotoxicity in TC-32 and CHLA-10 EFT lines and in HEK293 renal epithelial control cells. Average morpholino efficacy (EC50) was 0.66 ± 0.13 in TC-32, 0.25 ± 0.14 in CHLA-10 and 3.07 ± 5.02 µM in HEK293 control cells (ANOVA p < 0.01). Synergy was observed for a cocktail of 12 morpholinos at low dose (0.3 µM) in TC-32 cells, but not in CHLA-10 cells. Paired synergy was also observed in both EFT cell lines when the PHGDH pre-mRNA transcript was targeted in combination with XAGE1B or CYP4F22 transcripts. Antagonism was observed when CCND1 was targeted with XAGE1B or CYP4F22, or when IGFBP-2 was targeted with CCND1 or RBM11. This transcriptome profiling approach is highly effective for cancer drug discovery, as it identified new EWS-specific target genes (e.g. CYP4F22, RBM11 and IGBP-2), and predicted effective antisense agents (EC50 < 1 µM) that demonstrate both synergy and antagonism in combination therapy.

16.
Drug Metab Dispos ; 45(4): 375-389, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28188297

RESUMEN

The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens.


Asunto(s)
Empalme Alternativo , Sistema Enzimático del Citocromo P-450/genética , Epigénesis Genética , Preparaciones Farmacéuticas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Descubrimiento de Drogas/métodos , Homeostasis/fisiología , Humanos , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , ARN Mensajero/metabolismo , Transcriptoma
17.
PLoS Negl Trop Dis ; 10(2): e0004456, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26901785

RESUMEN

Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Macaca fascicularis , Enfermedad del Virus de Marburg/terapia , Marburgvirus/genética , Morfolinos/administración & dosificación , ARN sin Sentido/genética , Animales , Femenino , Humanos , Macaca fascicularis/virología , Masculino , Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Morfolinos/genética , Morfolinos/metabolismo , ARN sin Sentido/metabolismo , Tiempo de Tratamiento
18.
N Engl J Med ; 373(4): 339-48, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26200980

RESUMEN

BACKGROUND: AVI-7288 is a phosphorodiamidate morpholino oligomer with positive charges that targets the viral messenger RNA that encodes Marburg virus (MARV) nucleoprotein. Its safety in humans is undetermined. METHODS: We assessed the efficacy of AVI-7288 in a series of studies involving a lethal challenge with MARV in nonhuman primates. The safety of AVI-7288 was evaluated in a randomized, multiple-ascending-dose study in which 40 healthy humans (8 humans per dose group) received 14 once-daily infusions of AVI-7288 (1 mg, 4 mg, 8 mg, 12 mg, or 16 mg per kilogram of body weight) or placebo, in a 3:1 ratio. We estimated the protective dose in humans by comparing pharmacokinetic variables in infected nonhuman primates, uninfected nonhuman primates, and uninfected humans. RESULTS: Survival in infected nonhuman primates was dose-dependent, with survival rates of 0%, 30%, 59%, 87%, 100%, and 100% among monkeys treated with 0 mg, 3.75 mg, 7.5 mg, 15 mg, 20 mg, and 30 mg of AVI-7288 per kilogram, respectively (P<0.001 with the use of the log-rank test for the comparison of survival across groups). No safety concern was identified at doses up to 16 mg per kilogram per day in humans. No serious adverse events were reported. Drug exposure (the area under the curve) was dose-dependent in both nonhuman primates and humans; drug clearance was independent of dose but was higher in nonhuman primates than in humans. The protective dose in humans was initially estimated, on the basis of exposure, to be 9.6 mg per kilogram per day (95% confidence interval, 6.6 to 12.5) for 14 days. Monte Carlo simulations supported a dose of 11 mg per kilogram per day to match the geometric mean protective exposure in nonhuman primates. CONCLUSIONS: This study shows that, on the basis of efficacy in nonhuman primates and pharmacokinetic data in humans, AVI-7288 has potential as postexposure prophylaxis for MARV infection in humans. (Funded by the Department of Defense; ClinicalTrials.gov number, NCT01566877.).


Asunto(s)
Antivirales/administración & dosificación , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus , Morfolinos/administración & dosificación , Animales , Antivirales/efectos adversos , Antivirales/farmacocinética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Estimación de Kaplan-Meier , Macaca fascicularis , Enfermedad del Virus de Marburg/mortalidad , Marburgvirus/genética , Morfolinos/efectos adversos , Morfolinos/farmacocinética , ARN Mensajero , ARN Viral
19.
mBio ; 6(1)2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25670780

RESUMEN

UNLABELLED: Ebola viruses (EBOV) cause severe disease in humans and nonhuman primates with high mortality rates and continue to emerge in new geographic locations, including several countries in West Africa, the site of a large ongoing outbreak. Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense molecules that are able to target mRNAs in a sequence-specific fashion and suppress translation through steric hindrance. We previously showed that the use of PMOs targeting a combination of VP35 and VP24 protected rhesus monkeys from lethal EBOV infection. Surprisingly, the present study revealed that a PMOplus compound targeting VP24 alone was sufficient to confer protection from lethal EBOV infection but that a PMOplus targeting VP35 alone resulted in no protection. This study further substantiates recent data demonstrating that VP24 may be a key virulence factor encoded by EBOV and suggests that VP24 is a promising target for the development of effective anti-EBOV countermeasures. IMPORTANCE: Several West African countries are currently being ravaged by an outbreak of Ebola virus (EBOV) that has become a major epidemic affecting not only these African countries but also Europe and the United States. A better understanding of the mechanism of virulence of EBOV is important for the development of effective treatments, as no licensed treatments or vaccines for EBOV disease are currently available. This study of phosphorodiamidate morpholino oligomers (PMOs) targeting the mRNAs of two different EBOV proteins, alone and in combination, demonstrated that targeting a single protein was effective at conferring a significant survival benefit in an EBOV lethal primate model. Future development of PMOs with efficacy against EBOV will be simplified if only one PMO is required instead of a combination, particularly in terms of regulatory approval.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/prevención & control , Morfolinos/administración & dosificación , Proteínas Virales/genética , Animales , Ebolavirus/efectos de los fármacos , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Macaca mulatta , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
20.
Antimicrob Agents Chemother ; 58(11): 6639-47, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25155593

RESUMEN

Two identical single-ascending-dose studies evaluated the safety and pharmacokinetics (PK) of AVI-6002 and AVI-6003, two experimental combinations of phosphorodiamidate morpholino oligomers with positive charges (PMOplus) that target viral mRNA encoding Ebola virus and Marburg virus proteins, respectively. Both AVI-6002 and AVI-6003 were found to suppress disease in virus-infected nonhuman primates in previous studies. AVI-6002 (a combination of AVI-7537 and AVI-7539) or AVI-6003 (a combination of AVI-7287 and AVI-7288) were administered as sequential intravenous (i.v.) infusions of a 1:1 fixed dose ratio of the two subcomponents. In each study, 30 healthy male and female subjects between 18 and 50 years of age were enrolled in six-dose escalation cohorts of five subjects each and received a single i.v. infusion of active study drug (0.005, 0.05, 0.5, 1.5, 3, and 4.5 mg/kg per component) or placebo in a 4:1 ratio. Both AVI-6002 and AVI-6003 were safe and well tolerated at the doses studied. A maximum tolerated dose was not observed in either study. The four chemically similar PMOplus components exhibited generally similar PK profiles. The mean peak plasma concentration and area under the concentration-time curve values of the four components exhibited dose-proportional PK. The estimated plasma half-life of all four components was 2 to 5 h. The safety of the two combinations and the PK of the four components were similar, regardless of the target RNA sequence.


Asunto(s)
Fiebre Hemorrágica Ebola/tratamiento farmacológico , Enfermedad del Virus de Marburg/tratamiento farmacológico , Morfolinos/farmacocinética , Adulto , Animales , Área Bajo la Curva , Método Doble Ciego , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Femenino , Fiebre Hemorrágica Ebola/virología , Humanos , Infusiones Intravenosas , Masculino , Enfermedad del Virus de Marburg/virología , Marburgvirus/efectos de los fármacos , Marburgvirus/genética , Persona de Mediana Edad , Morfolinos/efectos adversos , Morfolinos/sangre , Placebos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...