Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolism ; 64(11): 1454-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26386696

RESUMEN

Information on insulin resistance in human liver is limited. In mouse diet-induced obesity (DIO), hepatic insulin resistance initially involves: lipid+insulin-induced activation of atypical protein kinase C (aPKC); elevated Akt activity/activation but selective impairment of compartmentalized Akt-dependent FoxO1 phosphorylation; and increases in gluconeogenic and lipogenic enzymes. In advanced stages, e.g., in hepatocytes of type 2 diabetes (T2D) humans, insulin activation of insulin receptor substrate-1(IRS-1) and Akt fails, further increasing FoxO1-dependent gluconeogenic/lipogenic enzyme expression. Increases in hepatic PGC-1α also figure prominently, but uncertainly, in this scheme. Here, we examined signaling factors in liver samples harvested from human transplant donors with increasing BMI, 20→25→30→35→40→45. We found, relative to lean (BMI=20-25) humans, obese (BMI>30) humans had all abnormalities seen in early mouse DIO, but, surprisingly, at all elevated BMI levels, had decreased insulin receptor-1 (IRS-1) levels, decreased Akt activity, and increased expression/abundance of aPKC-ι and PGC-1α. Moreover, with increasing BMI, there were: progressive increases in aPKC activity and PKC-ι expression/abundance; progressive decreases in IRS-1 levels, Akt activity and FoxO1 phosphorylation; progressive increases in expression/abundance of PGC-1α; and progressive increases in gluconeogenic and lipogenic enzymes. Remarkably, all abnormalities reached T2D levels at higher BMI levels. Most importantly, both "early" and advanced abnormalities were largely reversed by 24-hour treatment of T2D hepatocytes with aPKC inhibitor. We conclude: hepatic insulin resistance in human obesity is: advanced; BMI-correlated; and sequentially involves increased aPKC-activating ceramide; increased aPKC levels and activity; decreases in IRS-1 levels, Akt activity, and FoxO1 phosphorylation; and increases in expression/abundance of PGC-1α and gluconeogenic and lipogenic genes.


Asunto(s)
Índice de Masa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína Forkhead Box O1 , Humanos , Hígado/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Triglicéridos/metabolismo
2.
J Lipid Res ; 56(1): 70-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25395359

RESUMEN

Pathogenesis of insulin resistance in leptin-deficient ob/ob mice is obscure. In another form of diet-dependent obesity, high-fat-fed mice, hepatic insulin resistance involves ceramide-induced activation of atypical protein kinase C (aPKC), which selectively impairs protein kinase B (Akt)-dependent forkhead box O1 protein (FoxO1) phosphorylation on scaffolding protein, 40 kDa WD(tryp-x-x-asp)-repeat propeller/FYVE protein (WD40/ProF), thereby increasing gluconeogenesis. Resultant hyperinsulinemia activates hepatic Akt and mammalian target of rapamycin C1, and further activates aPKC; consequently, lipogenic enzyme expression increases, and insulin signaling in muscle is secondarily impaired. Here, in obese minimally-diabetic ob/ob mice, hepatic ceramide and aPKC activity and its association with WD40/ProF were increased. Hepatic Akt activity was also increased, but Akt associated with WD40/ProF was diminished and accounted for reduced FoxO1 phosphorylation and increased gluconeogenic enzyme expression. Most importantly, liver-selective inhibition of aPKC decreased aPKC and increased Akt association with WD40/ProF, thereby restoring FoxO1 phosphorylation and reducing gluconeogenic enzyme expression. Additionally, lipogenic enzyme expression diminished, and insulin signaling in muscle, glucose tolerance, obesity, hepatosteatosis, and hyperlipidemia improved. In conclusion, hepatic ceramide accumulates in response to CNS-dependent dietary excess irrespective of fat content; hepatic insulin resistance is prominent in ob/ob mice and involves aPKC-dependent displacement of Akt fromWD40/ProF and subsequent impairment of FoxO1 phosphorylation and increased expression of hepatic gluconeogenic and lipogenic enzymes; and hepatic alterations diminish insulin signaling in muscle.


Asunto(s)
Ceramidas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas Portadoras/metabolismo , Ciclopentanos/farmacología , Activación Enzimática/efectos de los fármacos , Proteína Forkhead Box O1 , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Obesos , Músculos/efectos de los fármacos , Músculos/metabolismo , Fosforilación/efectos de los fármacos , Esfingomielinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
J Biol Chem ; 289(36): 25021-30, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25035426

RESUMEN

Atypical PKC (aPKC) isoforms are activated by the phosphatidylinositol 3-kinase product phosphatidylinositol 3,4,5-(PO4)3 (PIP3). How PIP3 activates aPKC is unknown. Although Akt activation involves PIP3 binding to basic residues in the Akt pleckstrin homology domain, aPKCs lack this domain. Here we examined the role of basic arginine residues common to aPKC pseudosubstrate sequences. Replacement of all five (or certain) arginine residues in the pseudosubstrate sequence of PKC-ι by site-directed mutagenesis led to constitutive activation and unresponsiveness to PIP3 in vitro or insulin in vivo. However, with the addition of the exogenous arginine-containing pseudosubstrate tridecapeptide to inhibit this constitutively active PKC-ι, PIP3-activating effects were restored. A similar restoration of responsiveness to PIP3 was seen when exogenous pseudosubstrate was used to inhibit mouse liver PKC-λ/ζ maximally activated by insulin or ceramide and a truncated, constitutively active PKC-ζ mutant lacking all regulatory domain elements and containing "activating" glutamate residues at loop and autophosphorylation sites (Δ1-247/T410E/T560E-PKC-ζ). NMR studies suggest that PIP3 binds directly to the pseudosubstrate. The ability of PIP3 to counteract the inhibitory effects of the exogenous pseudosubstrate suggests that basic residues in the pseudosubstrate sequence are required for maintaining aPKCs in an inactive state and are targeted by PIP3 for displacement from the substrate-binding site during kinase activation.


Asunto(s)
Arginina/metabolismo , Isoenzimas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteína Quinasa C/metabolismo , Células 3T3-L1 , Secuencia de Aminoácidos , Animales , Arginina/genética , Western Blotting , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Isoenzimas/genética , Espectroscopía de Resonancia Magnética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacología , Fosfatos de Fosfatidilinositol/farmacología , Fosfatidilserinas/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/genética , Especificidad por Sustrato
4.
Mol Endocrinol ; 28(7): 1097-107, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24877563

RESUMEN

Tissue-specific knockout (KO) of atypical protein kinase C (aPKC), PKC-λ, yields contrasting phenotypes, depending on the tissue. Thus, whereas muscle KO of PKC-λ impairs glucose transport and causes glucose intolerance, insulin resistance, and liver-dependent lipid abnormalities, liver KO and adipocyte KO of PKC-λ increase insulin sensitivity through salutary alterations in hepatic enzymes. Also note that, although total-body (TB) homozygous KO of PKC-λ is embryonic lethal, TB heterozygous (Het) KO (TBHetλKO) is well-tolerated. However, beneath their seemingly normal growth, appetite, and overall appearance, we found in TBHetλKO mice that insulin receptor phosphorylation and signaling through insulin receptor substrates to phosphatidylinositol 3-kinase, Akt and residual aPKC were markedly diminished in liver, muscle, and adipose tissues, and glucose transport was impaired in muscle and adipose tissues. Furthermore, despite these global impairments in insulin signaling, other than mild hyperinsulinemia, glucose tolerance, serum lipids, and glucose disposal and hepatic glucose output in hyperinsulinemic clamp studies were normal. Moreover, TBHetλKO mice were protected from developing glucose intolerance during high-fat feeding. This metabolic protection (in the face of impaired insulin signaling) in HetλKO mice seemed to reflect a deficiency of PKC-λ in liver with resultant 1) increases in FoxO1 phosphorylation and decreases in expression of hepatic gluconeogenic enzymes and 2) diminished expression of hepatic lipogenic enzymes and proinflammatory cytokines. In keeping with this postulate, adenoviral-mediated supplementation of hepatic PKC-λ induced a diabetic state in HetλKO mice. Our findings underscore the importance of hepatic PKC-λ in provoking abnormalities in glucose and lipid metabolism.


Asunto(s)
Diabetes Mellitus Experimental/prevención & control , Glucosa/metabolismo , Isoenzimas/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Proteína Quinasa C/genética , Tejido Adiposo/metabolismo , Animales , Transporte Biológico/genética , Diabetes Mellitus Experimental/patología , Dieta Alta en Grasa , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/prevención & control , Haploinsuficiencia/genética , Mediadores de Inflamación/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Estreptozocina
5.
Diabetes ; 63(8): 2690-701, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24705403

RESUMEN

Initiating mechanisms that impair gluconeogenic enzymes and spare lipogenic enzymes in diet-induced obesity (DIO) are obscure. Here, we examined insulin signaling to Akt and atypical protein kinase C (aPKC) in liver and muscle and hepatic enzyme expression in mice consuming a moderate high-fat (HF) diet. In HF diet-fed mice, resting/basal and insulin-stimulated Akt and aPKC activities were diminished in muscle, but in liver, these activities were elevated basally and were increased by insulin to normal levels. Despite elevated hepatic Akt activity, FoxO1 phosphorylation, which diminishes gluconeogenesis, was impaired; in contrast, Akt-dependent phosphorylation of glycogenic GSK3ß and lipogenic mTOR was elevated. Diminished Akt-dependent FoxO1 phosphorylation was associated with reduced Akt activity associated with scaffold protein WD40/Propeller/FYVE (WD40/ProF), which reportedly facilitates FoxO1 phosphorylation. In contrast, aPKC activity associated with WD40/ProF was increased. Moreover, inhibition of hepatic aPKC reduced its association with WD40/ProF, restored WD40/ProF-associated Akt activity, restored FoxO1 phosphorylation, and corrected excessive expression of hepatic gluconeogenic and lipogenic enzymes. Additionally, Akt and aPKC activities in muscle improved, as did glucose intolerance, weight gain, hepatosteatosis, and hyperlipidemia. We conclude that Akt-dependent FoxO1 phosphorylation occurs on the WD/Propeller/FYVE scaffold in liver and is selectively inhibited in early DIO by diet-induced increases in activity of cocompartmentalized aPKC.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hígado/metabolismo , Obesidad/inducido químicamente , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Alimentación Animal , Animales , Proteínas Portadoras/genética , Ceramidas/farmacología , Dieta Alta en Grasa/efectos adversos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Ratones , Músculo Esquelético , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
Diabetologia ; 56(11): 2507-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23933835

RESUMEN

AIMS/HYPOTHESIS: Atypical protein kinase C (aPKC) levels and activity are elevated in hepatocytes of individuals with type 2 diabetes and cause excessive increases in the levels of lipogenic and gluconeogenic enzymes; aPKC inhibitors largely correct these aberrations. Metformin improves hepatic gluconeogenesis by activating 5'-AMP-activated protein kinase (AMPK). However, metformin also activates aPKC in certain tissues; in the liver, this activation could amplify diabetic aberrations and offset the positive effects of AMPK. In this study, we examined whether metformin activates aPKC in human hepatocytes and the metabolic consequences of any such activation. METHODS: We compared protein kinase activities and alterations in lipogenic and gluconeogenic enzyme levels during activity of the AMPK activators metformin and AICAR, relative to those of an aPKC-ι inhibitor, in hepatocytes from non-diabetic and type 2 diabetic human organ donors. RESULTS: Metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) activated aPKC at concentrations comparable with those required for AMPK activation. Moreover, both agents increased lipogenic enzyme levels by an aPKC-dependent mechanism. Thus, whereas insulin- and diabetes-dependent increases in lipogenic enzyme levels were reversed by aPKC inhibition, such levels were increased in hepatocytes from non-diabetic donors and remained elevated in hepatocytes from diabetic donors following metformin and AICAR treatment. In addition, whereas aPKC inhibition diminished gluconeogenic enzyme levels in the absence and presence of insulin in hepatocytes from both non-diabetic and diabetic donors, metformin and AICAR increased gluconeogenic enzyme levels in hepatocytes from non-diabetic individuals, but nevertheless diminished gluconeogenic enzyme levels in insulin-treated hepatocytes from diabetic donors. CONCLUSIONS/INTERPRETATION: Metformin and AICAR activate aPKC together with AMPK in human hepatocytes. Activation of aPKC increases lipogenic enzyme levels and alters gluconeogenic enzyme levels, and therefore appears to offset the positive effects of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Diabetes Mellitus Tipo 2/enzimología , Hepatocitos/metabolismo , Metformina/farmacología , Proteína Quinasa C/metabolismo , Ribonucleótidos/farmacología , Adulto , Aminoimidazol Carboxamida/farmacología , Western Blotting , Células Cultivadas , Femenino , Hepatocitos/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Persona de Mediana Edad
7.
J Immunol ; 177(6): 3884-92, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16951351

RESUMEN

The expression of HLA-DR1 (DRB1*0101) is associated with an enhanced risk for developing rheumatoid arthritis (RA). To study its function, we have solved the three-dimensional structure of HLA-DR1 complexed with a candidate RA autoantigen, the human type II collagen peptide CII (259-273). Based on these structural data, the CII peptide is anchored by Phe263 at the P1 position and Glu266 at P4. Surprisingly, the Lys at the P2 position appears to play a dual role by participating in peptide binding via interactions with DRB1-His81 and Asn82, and TCR interaction, based on functional assays. The CII peptide is also anchored by the P4 Glu266 residue through an ionic interaction with DRB1-Arg71 and Glu28. Participation of DRB1-Arg71 is significant because it is part of the shared epitope expressed by DR alleles associated with RA susceptibility. Potential anchor residues at P6 and P9 of the CII peptide are both Gly, and the lack of side chains at these positions appears to result in both a narrower binding groove with the peptide protruding out of the groove at this end of the DR1 molecule. From the TCR perspective, the P2-Lys264, P5-Arg267, and P8-Lys270 residues are all oriented away from the binding groove and collectively represent a positive charged interface for CII-specific TCR binding. Comparison of the DR1-CII structure to a DR1-hemagglutinin peptide structure revealed that the binding of these two peptides generates significantly different interfaces for the interaction with their respective Ag-specific TCRs.


Asunto(s)
Alelos , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Colágeno Tipo II/química , Predisposición Genética a la Enfermedad , Antígenos HLA-A/química , Epítopos Inmunodominantes/química , Colágeno Tipo II/inmunología , Cristalografía por Rayos X , Antígenos HLA-A/genética , Cadenas HLA-DRB1 , Humanos , Epítopos Inmunodominantes/inmunología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología
8.
Bioorg Med Chem ; 14(4): 1007-20, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16213731

RESUMEN

A set of novel pantothenamide-type analogues of the known Staphylococcus aureus pantothenate kinase (SaPanK) inhibitors, N-pentyl, and N-heptylpantothenamide, was synthesized in three series. The first series of analogues (1-3) were designed as molecular probes of the PanK binding site to elucidate important structure-activity relationships (SAR). The second series of analogues (4-16) were designed using structural information obtained from the Escherichia coli PanK (EcPanK) structure by targeting the pantothenate binding site and the adjacent phenylalanine-lined lipophilic pocket. Insight into the antimicrobial effect of N-pentylpantothenamide (N5-Pan) through its conversion to the antimetabolite ethyldethia-CoA and further incorporation into an inactive acyl carrier protein analogue drove the development of the third series of analogues (17-25) to enhance this effect using substrate-like substitutions. Each of the analogues was screened for enzyme inhibition activity against a panel of pantothenate kinases consisting of EcPanK, Aspergillus nidulans (AnPanK), SaPanK, and the murine isoform (MmPanK1alpha). Series 1 demonstrated only modest inhibitory activity, but did reveal some important SAR findings including stereospecific binding. Series 2 demonstrated a much higher inhibition rate for the entire series and significant inhibition was seen with analogues containing alkyl substituents. Series 3 demonstrated the most preferential inhibition profile, with the highest inhibitory activity against the SaPanK and MmPanK1alpha. The MmPanK1alpha protein was inhibited by a broad spectrum of the compounds, whereas the E. coli enzyme showed greater selectivity. The overall activity data from these analogues suggest a complex and non-enzyme specific SAR for pantothenamide substrate/inhibitors of the different PanK enzymes.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/química , Estructura Terciaria de Proteína , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Relación Estructura-Actividad
9.
J Biol Chem ; 279(34): 35622-9, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15136582

RESUMEN

Pantothenate kinase catalyzes the first step in the biosynthesis of coenzyme A, the major acyl group carrier in biology. In bacteria, regulation of pantothenate kinase activity is a major factor in controlling intracellular coenzyme A levels, and pantothenate analogs are growth-inhibiting antimetabolites. We have extended the structural information on Escherichia coli pantothenate kinase by determining the structure of the enzyme.ADP. pantothenate ternary complex. Pantothenate binding induces a significant conformational change in amino acids 243-263, which form a "lid" that folds over the open pantothenate binding groove. The positioning of the substrates suggests the reaction proceeds by a concerted mechanism that involves a dissociative transition state, although the negative charge neutralization of the gamma-phosphate by Arg-243, Lys-101, and Mg(2+) coupled with hydrogen bonding of the C1 of pantothenate to Asp-127 suggests different interpretations of the phosphoryl transfer mechanism of pantothenate kinase. N-alkylpantothenamides are substrates for pantothenate kinase. Modeling these antimetabolites into the pantothenate active site predicts that they bind in the same orientation as pantothenate with their alkyl chains interacting with the hydrophobic dome over the pantothenate pocket, which is also accessed by the beta-mercaptoethylamine moiety of the allosteric regulator, coenzyme A. These structural/biochemical studies illustrate the intimate relationship between the substrate, allosteric regulator, and antimetabolite binding sites on pantothenate kinase and provide a framework for studies of its catalysis and feedback regulation.


Asunto(s)
Proteínas de Escherichia coli/química , Modelos Moleculares , Ácido Pantoténico/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Regulación Alostérica , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Catálisis , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Conformación Molecular , Datos de Secuencia Molecular , Ácido Pantoténico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...