Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Res (Stuttg) ; 73(3): 137-145, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36574776

RESUMEN

BACKGROUND: Ischemia/reperfusion has been reported to further damage the intestine reperfusion injury (IRI) and cause multiple distal organ dysfunction through oxidative stress, inflammation, and apoptosis. Cysteamine is known to inhibit oxidative stress, inflammatory cytokines and apoptosis. This experiment was designed to evaluate the role of cysteamine against IRI in rats METHODS: Thirty-two Wistar rat strains were assigned to four groups: sham, Intestinal-reperfusion injury (IRI), 50 mg/kg and 100 mg/kg cysteamine treatment IRI. A 5 cm segment of terminal ileum was twisted 360° clockwise along the mesentery for 45 minutes to induce ischemia before detorsion. Tissues were preserved for biochemical evaluation and histology 4 hours after detorsion. Activities of GPx, GSH, protein and non-protein thiol, H2O2, MDA were evaluated. Serum concentration of nitrite, MPO, ALT, AST TNF-alpha and IL-6 were measured. Caspase 3 and bax were evaluated by immunohistochemistry. Statistical significance was set as p<0.05 RESULTS: Significant (p<0.05) increase in H2O2, MDA and nitrite but reduction in GPx, GSH, protein thiol and non-protein thiol in the IRI rats was reversed by 50 and 100 mg/kg cysteamine. Serum MPO, TNF-α, IL6, AST and ALT was significantly elevated in IRI while the rats treated with cysteamine showed a significant decrease (p<0.05) in the activities of these inflammatory and hepatic injury markers. CONCLUSION: Cysteamine mitigate IRI by enhancing intracellular antioxidant defense system, inhibiting inflammatory mediators and intestinal tissue expression of pro-apoptotic protein.


Asunto(s)
Cisteamina , Daño por Reperfusión , Ratas , Animales , Cisteamina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Peróxido de Hidrógeno , Nitritos , Ratas Wistar , Intestinos/irrigación sanguínea , Intestinos/patología , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología
2.
Andrologia ; 54(1): e14243, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34498746

RESUMEN

Oxidative stress, inflammation and apoptosis are major pathways in pathophysiology of testicular torsion/detorsion (TTDT) reperfusion injury. This study evaluated the antioxidant, anti-inflammatory and anti-apoptotic role of cysteamine in TTDT-induced injury. Male Wistar rats (n = 32) were grouped into four (n = 8): sham, ischaemia-reperfusion injury (IRI), cysteamine (100 mg/kg and 200 mg/kg) for in vivo study. Samples were taken for biomolecular and histological evaluation 48 hr after detorsion. Tissue SOD, GPx, GSH, GST activity, total thiol, H2 O2 and MDA were assessed. Serum levels of NO, MPO, TNF-alpha and IL-6 and sperm motility, count and viability were assessed. Caspase-3 and bax were evaluated by immunohistochemistry. Significant difference was set as p < .05. Significant increase in H2 O2, MDA and nitrite but reduction in SOD, GPx, GSH, GST and total thiol in the testicular tissue of IRI rats was reversed by cysteamine. Serum MPO and TNF-α were significantly elevated in RI, while treated-RI rats showed decrease (p < .05) in tissue level of the inflammation markers. Reduced sperm motility in RI was significantly reversed by cysteamine. Increased tissue expression of bax and caspase-3 was reversed by cysteamine. Cysteamine protected the testis against reperfusion injury through anti-inflammatory, antioxidant effects and inhibition of apoptosis in rats.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Animales , Apoptosis , Cisteamina/metabolismo , Cisteamina/farmacología , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Motilidad Espermática , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/metabolismo , Testículo/metabolismo
3.
Heliyon ; 6(5): e04011, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32490237

RESUMEN

This study investigated the effect of methanolic leaf extract of Peristrophe Bicalyculata (MEPb) on type 2 diabetes mellitus (T2DM) associated cognitive decline in Wistar rats. 36 male rats weighing 130-200 g were assigned into 6 groups (n = 6) as follows: normal control, diabetic control, pioglitazone-treated diabetic and three MEPb-treated diabetic groups, type 2 diabetes mellitus was induced with low dose streptozocin (STZ) injection following 3 weeks of high fat diet (HFD) intake. Thirty days after diabetes induction, rats exhibited marked and persistent hyperglycemia, animals were treated with MEPb (50, 100 and 200 mg/kg) and pioglitazone (10 mg/kg) as standard. Morris water maze (MWM) test and Novel object recognition test (NORT) were used to assess learning and memory. Blood glucose level, oxidative stress makers, pro-inflammatory marker and acetylcholinestarase activities were analysed. Both MEPb and pioglitazone significantly (P < 0.05) reduced escape latency in treated animals compared to the diabetic control group in the MWM test. Methanolic leaf extract of Peristrophe bicalyculata and pioglitazone also significantly (P < 0.05) increased discrimination index in treated animals compared to the diabetic control group in the novel object recognition test. Serum, brain and liver MDA levels were significantly (P < 0.05) decreased in MEPb and pioglitazone treated rats compared to diabetic control. Serum and liver GSH as well as CAT levels were significantly (P < 0.05) increased while brain GSH and CAT levels shows apparent increase in MEPb and pioglitazone treated rats compared with diabetic control. Treatment with MEPb caused a significant (P < 0.05) decrease in brain nitrite level, interleukin 6 and acetylcholinesterase activity compared to diabetic control group. We conclude that Methanolic leaf extract of Peristrophe bicalyculata enhanced antioxidant capacity and prevented neuroinflammation, consequently improving brain neuronal cholinergic function in experimental animals.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32319968

RESUMEN

Background The fractions of Corchorus olitorius leaf (COLF) were evaluated against oxidative stress, inflammation and apoptosis in isoproterenol (ISO)-induced myocardial injury (MI) Wistar rats. Methods The n-hexane, dichloromethane, ethylacetate and ethanol fractions were obtained from COLF extract. Male Wistar strains were randomly grouped into 11 groups (n = 6 in each group), which comprises normal control group, MI control group, 4 fraction groups with two doses (50 and 100 mg/kg) and enalapril (10 mg/kg). The sera were obtained for biochemical studies like AOPP (advance oxidized protein product), CRP (C-reactive protein), LDH (lactate dehydrogenase), CKMB (creatine kinase-MB) and myocardial tissue obtained for GSH, p65NFkB, bax, bcl2, p53 and p65NFkB assays. Results The subcutaneous administration of ISO increased the serum level of CRP, LDH and CKMB significantly (p < 0.05) and decreased serum AOPP, tissue GSH and p65NFkB (p < 0.05) in the infarction control rats. Pretreatment with COLF and enalapril increased the tissue GSH and p65NFkB levels (p < 0.05) and significantly reduced serum CRP, AOPP, LDH and CKMB. The dichloromethane fraction (CODCM) being the most active was chosen to evaluate the anti-apoptotic effect. CODCM (50 and 100 mg/kg) and enalapril showed a significant (p < 0.05) effect through severe expression of p65NFkB, which correlates with increased bcl2 protein expression, decreased bax protein and p53 expression. Gas chromatography mass spectrometry revealed the presence of 26 compounds in CODCM. Conclusions From the present study, COLF protected the myocardial tissue against ischemic injury in rats probably via the p65NFkB-dependent anti-apoptotic pathway and attenuation of pro-inflammatory marker level.


Asunto(s)
Cardiotónicos/farmacología , Corchorus/química , Infarto del Miocardio/prevención & control , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/administración & dosificación , Cardiotónicos/aislamiento & purificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Enalapril/farmacología , Cromatografía de Gases y Espectrometría de Masas , Isoproterenol , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Hojas de la Planta , Ratas , Ratas Wistar , Factor de Transcripción ReIA/metabolismo
5.
Heliyon ; 6(3): e03514, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32190756

RESUMEN

BACKGROUND: Kafura pelebe (camphor) {C10H16O} is a chemical substance used mostly amongst the Yoruba ethnic group in Western Nigeria to treat infantile colic during early childhood. This study assess the neurotoxic potentials of Kafura following sub-chronic exposure in female albino Wistar rats. METHODS: Twenty-eight female rats (mean weight of 130 g) were randomly selected and assigned into four (4) groups. Control, received 1ml coconut oil while the treatment groups received 79, 158 and 237. mg/kg b.wt (d ose p.o) of Kafura for the period of 14 days. On day fifteen, animals were dissected and the brain organ excised for the homogenate and histopathologic assay, blood samples were also collected for haematological analysis. Morris Water Maze experiment for reference memory was also carried out to ascertain effect of Kafura in the Central Nervous system (CNS). RESULTS: A trend toward decreased body-weight gain and increase brain weight was observed in Kafura-treated rats but was statistically not significant, compared to control. The biochemical assessment of the antioxidant status of brains of Kafura-treated rats showed significant (p ≤ 0.05) increase in activities of some anti-oxidant enzymes (Superoxide dismutase (SOD), Glutathione peroxide (GPx), and Catalase (CAT)). There was increase in acetylcholinesterase (AChE), Malondialdehyde (MDA), and Total protein activities in the brain of treated rats compared to control. Alterations of the haematological parameters were observed, with the plasma granulocytes, lymphocytes, and haemoglobin (HGB), showing significant decrease in the treated rats compared to control. The water maze test showed a marked increase in spatial learning and memory time (seconds) in kafura-treated rats, compared to control and across treated groups. CONCLUSIONS: The present study provides indication that kafura Pelebe shows apparent neurotoxicity in experimental animals. Incessant exposure in humans though may lead to development of some central nervous system defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...