Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1202, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882415

RESUMEN

Seed thermoinhibition, the repression of germination under high temperatures, prevents seedling establishment under potentially fatal conditions. Thermoinhibition is relevant for phenology and agriculture, particularly in a warming globe. The temperature sensing mechanisms and signaling pathways sustaining thermoinhibition are unknown. Here we show that thermoinhibition in Arabidopsis thaliana is not autonomously controlled by the embryo but is rather implemented by the endosperm. High temperature is sensed through endospermic phyB by accelerating its reversion from the active signaling Pfr form into the inactive Pr form, as previously described in seedlings. This leads to thermoinhibition mediated by PIFs, mainly PIF1, PIF3 and PIF5. Endospermic PIF3 represses the expression of the endospermic ABA catabolic gene CYP707A1 and promotes endospermic ABA accumulation and release towards the embryo to block its growth. Furthermore, endospermic ABA represses embryonic PIF3 accumulation that would otherwise promote embryonic growth. Hence, under high temperatures PIF3 exerts opposite growth responses in the endosperm and embryo.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fitocromo B , Agricultura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endospermo/genética , Fitocromo B/genética , Plantones , Semillas/genética , Temperatura , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
2.
Plant Physiol ; 191(4): 2245-2255, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36583226

RESUMEN

The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development. We observed that Tenofovir reduces extrachromosomal DNA accumulation and prevents new genomic integrations of the active LTR-TE ONSEN in heat-stressed Arabidopsis seedlings, and transposons of O. sativa 17 and 19 (Tos17 and Tos19) in rice calli. In addition, Tenofovir allows the recovery of plants free from new LTR-TE insertions. We propose the use of Tenofovir as a tool for studies of LTR-TE transposition and for limiting genetic instabilities of plants derived from tissue culture.


Asunto(s)
Arabidopsis , Oryza , Retroelementos/genética , Arabidopsis/genética , Genoma de Planta/genética , Secuencias Repetidas Terminales/genética , Tenofovir , Oryza/genética
3.
Annu Rev Plant Biol ; 73: 355-378, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35138879

RESUMEN

Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Latencia en las Plantas/genética , Semillas/genética
4.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34706263

RESUMEN

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Asunto(s)
Arabidopsis/metabolismo , Endospermo/metabolismo , Péptidos/metabolismo , Plantones/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Germinación , Plantas , Semillas/metabolismo
5.
Methods Mol Biol ; 2250: 239-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33900609

RESUMEN

We describe methods to separate endosperms and embryos from Arabidopsis thaliana mature seeds in large amounts and to isolate high-quality genomic DNA from those tissues. The resulting materials are suitable for analysis of DNA methylation by bisulfite sequencing or histone modifications by chromatin immunoprecipitation (ChIP).


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Endospermo/genética , Semillas/genética , Proteínas de Arabidopsis/genética , ADN de Plantas/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Genómica/métodos
6.
Elife ; 82019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30910007

RESUMEN

Seed dormancy is an adaptive trait preventing premature germination out of season. In a previous report (Piskurewicz et al., 2016) we showed that dormancy levels are maternally inherited through the preferential maternal allele expression in the seed endosperm of ALLANTOINASE (ALN), a negative regulator of dormancy. Here we show that suppression of ALN paternal allele expression is imposed by non-canonical RNA-directed DNA methylation (RdDM) of the paternal ALN allele promoter. Dormancy levels are further enhanced by cold during seed development. We show that DNA methylation of the ALN promoter is stimulated by cold in a tissue-specific manner through non-canonical RdDM, involving RDR6 and AGO6. This leads to suppression of ALN expression and further promotion of seed dormancy. Our results suggest that tissue-specific and cold-induced RdDM is superimposed to parental allele imprints to deposit in the seed progeny a transient memory of environmental conditions experienced by the mother plant.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas , ARN/metabolismo , Amidohidrolasas/biosíntesis , Arabidopsis/genética , Frío , Regiones Promotoras Genéticas
7.
Plant J ; 98(2): 277-290, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30570804

RESUMEN

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endospermo/metabolismo , Latencia en las Plantas/fisiología , Plantones/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Fenotipo , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/genética , Semillas/genética , Transducción de Señal , Factores de Transcripción/genética
9.
Elife ; 52016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28005006

RESUMEN

Mature seed dormancy is a vital plant trait that prevents germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and its biological significance among accessions are poorly understood. Upon seed imbibition, the endosperm is essential to repress the germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes that are expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role in regulating germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels.


Asunto(s)
Arabidopsis/fisiología , Impresión Genómica , Herencia Materna , Latencia en las Plantas
10.
Front Plant Sci ; 6: 380, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074941

RESUMEN

Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

11.
EMBO J ; 33(18): 1987-98, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25104823

RESUMEN

Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.


Asunto(s)
División Celular , Epigénesis Genética , Patrón de Herencia , Fenómenos Fisiológicos de las Plantas , ADN de Plantas/metabolismo , Histonas/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(23): 8547-52, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912148

RESUMEN

Examples of transgenerational transmission of environmentally induced epigenetic traits remain rare and disputed. Abiotic stress can release the transcription of epigenetically suppressed transposons and, noticeably, this activation is only transient. Therefore, it is likely that mechanisms countering the mitotic and meiotic inheritance of stress-triggered chromatin changes must exist but are undefined. To reveal these mechanisms, we screened for Arabidopsis mutants impaired in the resetting of stress-induced loss of epigenetic silencing and found that two chromatin regulators, Decrease in DNA methylation1 (DDM1) and Morpheus' Molecule1 (MOM1), act redundantly to restore prestress state and thus erase "epigenetic stress memory". In ddm1 mutants, stress hyperactivates heterochromatic transcription and transcription persists longer than in the wild type. However, this newly acquired state is not transmitted to the progeny. Strikingly, although stress-induced transcription in mom1 mutants is as rapidly silenced as in wild type, in ddm1 mom1 double mutants, transcriptional signatures of stress are able to persist and are found in the progeny of plants stressed as small seedlings. Our results reveal an important, previously unidentified function of DDM1 and MOM1 in rapid resetting of stress induced epigenetic states, and therefore also in preventing their mitotic propagation and transgenerational inheritance.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Proteínas Nucleares/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Calor , Patrón de Herencia , Mutación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
13.
Development ; 140(9): 1958-69, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23571218

RESUMEN

Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Hojas de la Planta/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Northern Blotting , Proliferación Celular , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Transcripción Genética
14.
Plant Cell Physiol ; 54(3): 418-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396601

RESUMEN

It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Algoritmos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , División Celular , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Plant Cell Physiol ; 52(8): 1259-73, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21700721

RESUMEN

Leaf primordia are generated around the shoot apical meristem. Mutation of the ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana results in defects in repression of the meristematic and indeterminate state, establishment of adaxial-abaxial polarity and left-right symmetry in leaves. AS2 represses transcription of meristem-specific class 1 KNOX homeobox genes and of the abaxial-determinant genes ETTIN/ARF3, KANADI2 and YABBY5. To clarify the role of AS2 in the establishment of leaf polarity, we isolated mutations that enhanced the polarity defects associated with as2. We describe here the enhancer-of-asymmetric-leaves-two1 (east1) mutation, which caused the formation of filamentous leaves with abaxialized epidermis on the as2-1 background. Levels of transcripts of class 1 KNOX and abaxial-determinant genes were markedly higher in as2-1 east1-1 mutant plants than in the wild-type and corresponding single-mutant plants. EAST1 encodes the histone acetyltransferase ELONGATA3 (ELO3), a component of the Elongator complex. Genetic analysis, using mutations in genes involved in the biogenesis of a trans-acting small interfering RNA (ta-siRNA), revealed that ELO3 mediated establishment of leaf polarity independently of AS2 and the ta-siRNA-related pathway. Treatment with an inhibitor of histone deacetylases (HDACs) caused additive polarity defects in as2-1 east1-1 mutant plants, suggesting the operation of an ELO3 pathway, independent of the HDAC pathway, in the determination of polarity. We propose that multiple pathways play important roles in repression of the expression of class 1 KNOX and abaxial-determinant genes in the development of the adaxial domain of leaves and, thus, in the establishment of leaf polarity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Polaridad Celular , Histona Acetiltransferasas/metabolismo , Hojas de la Planta/citología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Linaje de la Célula/efectos de los fármacos , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Histona Acetiltransferasas/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Modelos Biológicos , Mutación/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , ARN Polimerasa Dependiente del ARN/genética , Factores de Transcripción/genética
16.
Biocontrol Sci ; 15(3): 117-21, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20938097

RESUMEN

An ecological and molecular-epidemiological study of Vibrio cholerae in some aquatic environments of Okayama was carried out. The strains of non-O1/non-O139 were isolated frequently, and unconventional O1 strains were rarely observed. These non-O1/non-O139 strains did not have ctxA, the gene of choleratoxin, the major pathogenic factor of epidemic cholera, but possessed hlyA, a gene encoding hemolysin thought to be a pathogenic factor for sporadic diarrhea or food poisoning. Furthermore these strains also had toxR, a gene controlling the pathogenic island of the V. cholerae genome, suggesting the potentia of these strains for accepting the horizontal transfer of virulence factor genes. Thus, continuous survey of the vibrio is to ensure the food safety of fishery products.


Asunto(s)
Ecología , Vibrio cholerae/aislamiento & purificación , Microbiología del Agua , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad
17.
Genes Dev ; 22(18): 2564-77, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794352

RESUMEN

Viruses induce pathogenic symptoms on plants but the molecular basis is poorly understood. Here, we show that transgenic Arabidopsis expressing the pathogenesis protein betaC1 of Tomato yellow leaf curl China virus (TYLCCNV), a geminivirus, can phenocopy to a large extent disease symptoms of virus-infected tobacco plants in having upward curled leaves, radialized leaves with outgrowth tissues from abaxial surfaces, and sterile flowers. These morphological changes are paralleled by a reduction in miR165/166 levels and an increase in PHB and PHV transcript levels. Two factors, ASYMMETRIC LEAVES 1 (AS1) and ASYMMETRIC LEAVES 2 (AS2), are known to regulate leaf development as AS1/AS2 complex. Strikingly, betaC1 plants phenocopy plants overexpressing AS2 at the morphological and molecular level and betaC1 is able to partially complement as2 mutation. betaC1 binds directly to AS1, elicits morphological and gene expression changes dependent on AS1 but not AS2, and attenuates expression of selective jasmonic acid (JA)-responsive gene. Our results show that betaC1 forms a complex with AS1 to execute its pathogenic functions and to suppress a subset of JA responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/virología , Ciclopentanos/metabolismo , Geminiviridae/patogenicidad , Oxilipinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Virulencia
18.
Plant J ; 51(2): 173-84, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17559509

RESUMEN

The ASYMMETRIC LEAVES2 (AS2) gene, a member of the AS2/LOB gene family, and the ASYMMETRIC LEAVES1 (AS1) gene of Arabidopsis thaliana participate in the development of a symmetrical, expanded lamina. We report here the patterns of expression of these genes, and the importance of the sites of such expression in leaf development. Transcripts of both genes accumulated in the entire leaf primordia at early stages, but the patterns of accumulation changed as the leaves expanded. AS2 and AS1 transcripts were detected, respectively, in the adaxial domain and in the inner domain between the adaxial and abaxial domains of leaves. The ratios of numbers of adaxial cells to abaxial cells in cotyledons of corresponding mutant lines were greater than the ratios in wild-type cotyledons. The low levels of ectopic expression of AS2 under the control of the AS1 promoter in as2 mutant plants restored an almost normal phenotype in some cases, but also resulted in flatter leaves than those of wild-type plants. Strong expression of the construct in wild-type and as2 plants, but not as1 plants, resulted in the formation of narrow, upwardly curled leaves. Our results indicate that AS2 represses cell proliferation in the adaxial domain in the presence of AS1, and that adaxial expression of AS2 at an appropriate level is critical for the development of a symmetrical, expanded lamina. Real-time RT-PCR analysis revealed that mutation of either AS2 or AS1 resulted in an increase in the levels of transcripts of ETTIN (ETT; also known as AUXIN RESPONSE FACTOR3, ARF3) and KANADI2 (KAN2), which are abaxial determinants, and YABBY5 (YAB5). Thus, AS2 and AS1 might negatively regulate the expression of these genes in the adaxial domain, which might be related to the development of flat and expanded leaves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proliferación Celular , Cotiledón/metabolismo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Factores de Transcripción/genética
19.
Plant Mol Biol ; 62(6): 913-25, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16972166

RESUMEN

Most strains harboring the feathered (fe) mutation in the Japanese morning glory (Ipomoea nil or Pharbitis nil) show deformed phenotypes such as upcurled leaves and separated or tubular petals. These phenotypes seem to be caused by loss of abaxial identity in lateral organs. The FE gene was isolated using the inserted transposon as a tag. An En/Spm-related transposable element, Tpn102, inserted in the fourth intron of the FE gene, was responsible for the fe mutation. FE encodes a GARP transcription factor closely related to Arabidopsis KANADI1 (KAN1), which promotes an abaxial cell fate. Genetic analyses and molecular studies, which showed that all fe mutant strains have the same fe allele despite their phenotypic differences, revealed that fe strains with strong phenotypes have additional mutations enhancing the fe phenotype. These findings and historical records of fe phenotypes suggest that these enhancer mutations were accumulated in the fe background during selection for strong phenotypes. The mutant phenotypes and molecular analysis of fe strains suggest that FE regulates the abaxial identity of lateral organs redundantly with modifier genes, as KAN1 does in Arabidopsis. FE, however, affects flower phenotype even in the single mutant unlike KAN1, moreover, modifier mutations affect flower phenotype only in the fe mutant background, suggesting that FE may play a more crucial role in promotion of abaxial cell fate in flowers of the Japanese morning glory.


Asunto(s)
Flores/genética , Ipomoea/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Polaridad Celular/genética , Elementos Transponibles de ADN/genética , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , ADN de Plantas/química , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Flores/crecimiento & desarrollo , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Ipomoea/citología , Ipomoea/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación/genética , Fenotipo , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
20.
J Plant Res ; 118(1): 49-51, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15655581

RESUMEN

The study of AFLP analysis in Kandelia obovata, one of the major mangrove species in Japan, revealed the existence of a unique fragment showing stuttered peaks. We cloned this fragment and found a novel microsatellite locus. We report the method used for isolation and the polymorphic nature of this locus among the populations on Iriomote Island.


Asunto(s)
ADN de Plantas/química , Repeticiones de Microsatélite , Rhizophoraceae/genética , Alelos , Secuencia de Bases , ADN de Plantas/genética , Datos de Secuencia Molecular , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...