RESUMEN
We structurally and spectroscopically investigated a series of praseodymium (Pr) complexes with eight ligands that form helicate molecular structures. The mother ligand skeleton (L) has two bipyridine moieties bridged with ethylenediamine. The bridged skeleton of PrL was changed to diamines 1-methyl-ethylenediamine, trimethylenediamine and 2,2'-dimethyl-trimethylenediamine, and the corresponding ligands were designated as Lme, Lpr and Ldmpr, for each Pr in these complexes upon UV-excitation. The luminescence quantum yields of PrL and PrLpr in the visible and near infrared (NIR) regions indicate that PrL is excited by both the electronic state of the ligand and the ff absorption band, whereas PrLpr is excited through the ligand. The addition of a methyl group to PrL and PrLpr has a different effect on the Pr emission intensity with the intensity of PrLme decreasing more than that of PrL and PrLdmpr and increasing more than that of PrLpr. Thus, the coordination of Pr and the increased rigidity of the ligand upon methylation enhance luminescence. The azomethine moieties on Lme, Lpr and Ldmpr were reduced and formed the corresponding PrLH, PrLmeH, PrLprH and PrLdmprH complexes. The luminescence of the non-methylated series is due to transitions related to the 1D2 level and thus the methylated series luminesces due to high energy levels such as 3PJ arising from the shortened π electronic systems. We also discuss the strong red emission of a series of Eu complexes with eight ligands from the viewpoint of their molecular structures and luminescence efficiencies and evaluate the Judd-Ofelt parameters from the luminescence spectra of Eu complexes.
RESUMEN
Ligands based on 2,2'-bipyridine and valinamide moieties induce circularly polarized luminescence in their europium complexes. Both the R and S enantiomers of the complexes were successfully obtained. Single-crystal X-ray analysis of the racemic crystal confirmed that the ligand is coordinated to the europium ion in a tetradentate fashion. The π-electronic system of the ligand is co-planar with the valinamide moiety, and acts as an efficient photoantenna to sensitize europium luminescence by UV excitation. The luminescence quantum yield (QY) of europium in the valinamide-containing complex was 44 % in acetonitrile. The glum value to evaluate the circularly polarized luminescence was relatively high at |0.13| estimated from their magnetic dipole transitions around 593â nm. For comparison, we prepared hexadentate europium complexes in the S- and R-forms derived from two bipyridine moieties linked by ethylenediamines. The determined QYs were 18 % (S) and 16 % (R), and the glum value |0.12| for the hexadentate complexes. The photophysical properties of the gadolinium complexes of the ligands were also evaluated.
RESUMEN
A simple device structure composed of an interfacial Eu2+/3+ complex on a mesoporous TiO2 film is developed by a solution process and acts as the high-performance photodetector with photomultiplication phenomena. The electron transfer from the photoexcited organic ligand, 2,2':6',2â³-terpyridine (terpy), as a photosensitizer to TiO2 is accelerated by the reduction level of Eu3+/2+ ions chemically bonding among terpy and TiO2, resulting in the generation of a large photocurrent. It is worth noting that its external quantum efficiency is in excess of 105% under applied reverse bias. The corresponding responsivity of the device is also determined to be 464 A/W at an irradiation light intensity of 0.7 mW/cm2 (365 nm), which is more than 3 orders of magnitude larger than those of inorganic photodetectors. A dark current of the device can be reduced to 10-9 A/cm2 by introducing a Eu oxide thin-film layer as a carrier blocking layer at the interface between transparent conducting oxide (TCO) and the TiO2 layer, and the specific detectivity reaches 5.2 × 1015 jones at 365 nm with -3 V. The performance of our organic-inorganic hybrid photodetector surpasses those of existing ultraviolet photodetectors.
RESUMEN
A heterometallic Tb-Pt complex, [Tb2 Pt3 (SAc)12 (H2 O)2 ] (SAc=thioacetate), was synthesized. Dual emission was modulated by the presence of a heterometallic Tb-Pt bonding environment. The heterometallic Tb-Pt bond lowers the symmetry of the Tb ion and enhanced the emission efficiency. In addition, the Tb-Pt complex shows field-induced multiple magnetic relaxation pathways. Furthermore, it served as an antenna for the observed dual emission. In other words, the heterometallic Tb-Pt bond has a significant effect on the luminescence and magnetic properties of the complex.
RESUMEN
Probiotic strains have been reported to have the ability to control allergic and inflammatory diseases. In this study, we studied the inhibitory effect of Bacillus subtilis (natto) (BS) on atopic dermatitis. The effects of continuous oral administration of BS for 4 weeks on the development of atopic dermatitis induced by Dermatophagoides farinae body antigen (DF) in NC/Nga (NC) mice were evaluated using 4 groups of mice: group (Gp) DF, DF(+) with no administration of bacteria (n=3); Gp DF/BS, DF(+) and BS(+) (n=5); and Gp PBS, DF(-) with no administration of bacteria (n=3). The mice were gavaged with 1.2 × 10(17) CFU/head of BS 6 times a week for 4 weeks, and DF was applied twice a week for 4 weeks. Histopathological examination revealed significant differences in auricular thickness between Gp DF (664.4 µm, SD=78.0) and Gp DF/BS (278.7 µm, SD = 88.8; p<0.01). The dorsal skin of Gp DF/BS (316.7 µm, SD=187.4) was significantly thinner than that of Gp DF (503 µm, SD=116.3). These results suggest that continuous oral administration of fermented food-derived bacteria (BS) can be effective in alleviating the development of skin lesions induced by DF in NC mice.