Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
JACC Basic Transl Sci ; 9(1): 18-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362338

RESUMEN

Hypertension and metabolic syndrome frequently coexist to increase the risk for adverse cardiometabolic outcomes. To date, no drug has been proven to be effective in treating hypertension with metabolic syndrome. M-atrial natriuretic peptide is a novel atrial natriuretic peptide analog that activates the particulate guanylyl cyclase A receptor. This study conducted a double-blind, placebo-controlled trial in 22 patients and demonstrated that a single subcutaneous injection of M-atrial natriuretic peptide was safe, well-tolerated, and exerted pleiotropic properties including blood pressure-lowering, lipolytic, and insulin resistance-improving effects. (MANP in Hypertension and Metabolic Syndrome [MANP-HTN-MS]; NCT03781739).

2.
Am J Physiol Heart Circ Physiol ; 325(3): H545-H552, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417873

RESUMEN

Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are produced in the heart and secreted into the circulation. As hormones, both peptides activate the guanylyl cyclase receptor A (GC-A), playing a role in blood pressure (BP) regulation. A significant role for ANP and BNP includes favorable actions in metabolic homeostasis. Sex-based high prevalence of risk factors for cardiovascular disease in males compared with females is well established, but sex-based differences on cardiometabolic protection have not been investigated in relation to ANP (NPPA) and BNP (NPPB) gene variants. We included 1,146 subjects in the general population from Olmsted County, Minnesota. Subjects were genotyped for the ANP gene variant rs5068 and BNP gene variant rs198389. Cardiometabolic parameters and medical records were reviewed. In the presence of the minor allele of rs5068, diastolic BP, creatinine, body mass index (BMI), waist measurement, insulin, and prevalence of obesity and metabolic syndrome were lower, whereas HDL was higher in males with only trends observed in females. We observed no associations of the minor allele with echocardiographic parameters in either males or females. Regarding rs198389 genotype, the minor allele was not associated with any BP, metabolic, renal, or echocardiographic parameters in either sex. In the general community, the minor allele of the ANP gene variant rs5068 is associated with a favorable metabolic phenotype in males. No associations were observed with the BNP gene variant rs198389. These studies support a protective role of the ANP pathway on metabolic function and underscore the importance of sex in relationship to natriuretic peptide responses.NEW & NOTEWORTHY Males are characterized by lower ANP and BNP with greater prevalence of cardiometabolic disease. The ANP genetic variant rs5068 was associated with less metabolic dysfunction in males, whereas no metabolic profile was related to the BNP genetic variant rs198389 in the general population. ANP may play a more biological role in metabolic homeostasis compared with BNP in the general population with greater physiological metabolic actions in males compared with females.


Asunto(s)
Factor Natriurético Atrial , Enfermedades Cardiovasculares , Masculino , Femenino , Humanos , Genotipo , Fenotipo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Péptido Natriurético Encefálico
3.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239899

RESUMEN

The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.


Asunto(s)
Angiotensina II , Guanilato Ciclasa , Humanos , Ratas , Animales , Guanilato Ciclasa/metabolismo , Angiotensina II/farmacología , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptido Natriurético Encefálico , GMP Cíclico/metabolismo , Péptidos Natriuréticos
4.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747784

RESUMEN

Background: Natriuretic peptide system (NPS) and renin angiotensin aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date support this notion. Objectives: This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro for translational insights. Methods: Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in rat model to determine influence of ANGII on ANP actions. Multiple engineered HEK293 cells and surface plasmon resonance (SPR) technology were leveraged for mechanistic exploration. Results: In humans, ANGII showed inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and interaction term between ANGII and natriuretic peptide increased predicting accuracy of base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed positive association between cGMP with ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at physiological dose attenuated blood pressure reduction and cGMP generation triggered by ANP infusion. In vitro, we showed that the suppression effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), which can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using SPR, we showed ANGII has low affinity for particulate guanylyl cyclase A (GC-A) receptor binding compared to ANP or BNP. Conclusions: Our study reveals ANGII as a natural suppressor for cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular disease.

6.
Hypertension ; 79(8): 1702-1712, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674049

RESUMEN

BACKGROUND: Aldosterone is a critical pathological driver for cardiac and renal diseases. We recently discovered that mutant atrial natriuretic peptide (MANP), a novel atrial natriuretic peptide (ANP) analog, possessed more potent aldosterone inhibitory action than ANP in vivo. MANP and natriuretic peptide (NP)-augmenting therapy sacubitril/valsartan are under investigations for human hypertension treatment. Understanding the elusive mechanism of aldosterone inhibition by NPs remains to be a priority. Conflicting results were reported on the roles of the pGC-A (particulate guanylyl cyclase A receptor) and NP clearance receptor in aldosterone inhibition. Furthermore, the function of PKG (protein kinase G) and PDEs (phosphodiesterases) on aldosterone regulation are not clear. METHODS: In the present study, we investigated the molecular mechanism of aldosterone regulation in a human adrenocortical cell line H295R and in mice. RESULTS: We first provided evidence to show that pGC-A, not NP clearance receptor, mediates aldosterone inhibition. Next, we confirmed that MANP inhibits aldosterone via PDE2 (phosphodiesterase 2) not PKG, with specific agonists, antagonists, siRNA silencing, and fluorescence resonance energy transfer experiments. Further, the inhibitory effect is mediated by a reduction of intracellular Ca2+ levels. We then illustrated that MANP directly reduces aldosterone synthase CYP11B2 (cytochrome p450 family 11 subfamily b member 2) expression via PDE2. Last, in PDE2 knockout mice, consistent with in vitro findings, embryonic adrenal CYP11B2 is markedly increased. CONCLUSIONS: Our results innovatively explore and expand the NP/pGC-A/3',5', cyclic guanosine monophosphate (cGMP)/PDE2 pathway for aldosterone inhibition by MANP in vitro and in vivo. In addition, our data also support the development of MANP as a novel ANP analog drug for aldosterone excess treatment.


Asunto(s)
Aldosterona , Factor Natriurético Atrial , Aldosterona/farmacología , Aminobutiratos , Animales , Factor Natriurético Atrial/farmacología , Compuestos de Bifenilo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Citocromo P-450 CYP11B2/genética , Humanos , Ratones , Ratones Noqueados , Péptidos Natriuréticos
7.
Hypertension ; 79(4): 750-760, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045724

RESUMEN

BACKGROUND: cGMP MANP (M-atrial natriuretic peptide) is a best-in-class activator of the pGC-A (particulate guanylyl cyclase A) receptor. Furosemide increases the effectiveness of antihypertensive agents, but activates renin-angiotensin-aldosterone system. We aimed to investigate for the first time cardiorenal and neurohumoral actions of MANP in a genetic model of hypertension in spontaneously hypertensive rats. We also assessed how MANP would potentiate the blood pressure (BP)-lowering actions of furosemide while reducing the production of aldosterone. METHODS: Spontaneously hypertensive rats (N=60) were randomized in vehicle, MANP, furosemide, or MANP+furosemide groups. Furosemide (1, 5, 10 mg/kg) was given as a single bolus which in MANP+furosemide groups was followed by a 60-minute infusion of MANP. RESULTS: BP was reduced in MANP300 (300 pmol/[kg·min]) and MANP600 (600 pmol/[kg·min]) groups (P<0.05) and was accompanied by significant increase in plasma cyclic guanosine monophosphate. Furosemide alone reduced BP but less compared with MANP with no change in plasma cyclic guanosine monophosphate. MANP+furosemide resulted in the greatest BP reduction and significant increase in plasma cyclic guanosine monophosphate in Fs5+MANP300, Fs10+MANP300, and Fs10+MANP600. Plasma aldosterone increased in furosemide groups, which was significantly attenuated in MANP+furosemide groups. Natriuresis and diuresis increased in all treated groups (P<0.05) with no significant differences between furosemide and furosemide+MANP. In vitro, MANP increased cyclic guanosine monophosphate level in human vascular cells. CONCLUSIONS: We provide novel evidence that MANP potentiates the BP-lowering actions of furosemide, suppresses the activation of renin-angiotensin-aldosterone system, and preserves renal function. These data are highly relevant to clinical needs in the treatment of hypertension and heart failure.


Asunto(s)
Factor Natriurético Atrial , Hipertensión , Aldosterona , Animales , Factor Natriurético Atrial/farmacología , Presión Sanguínea , GMP Cíclico , Furosemida/efectos adversos , Guanosina Monofosfato/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Natriuresis , Ratas
9.
JACC Heart Fail ; 9(9): 613-623, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246604

RESUMEN

OBJECTIVES: This study sought to characterize urinary and plasma C-type natriuretic peptide (CNP) in acute decompensated heart failure (ADHF) to define their relationship with clinical variables and to determine whether urinary and plasma CNP together add prognostic value. BACKGROUND: CNP is a protective hormone that is synthesized in the kidney and endothelium and possesses antiremodeling properties. Urinary and plasma CNP levels are elevated in pathophysiological conditions; however, their regulation and prognostic value in heart failure (HF) is unclear. METHODS: Urinary and plasma CNP were measured in 109 healthy subjects and 208 patients with ADHF; the 95th percentile of CNP values from healthy subjects established the normal contemporary cutoffs. Patients with ADHF were stratified based on urinary and plasma CNP levels for clinical characterization and the assessment of risk for adverse outcomes. RESULTS: There was no significant correlation between urinary and plasma CNP in both cohorts. Urinary and plasma CNP were significantly elevated in patients with ADHF, and both increased with disease severity and were positively correlated with plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP). Of the patients with ADHF, 23% had elevations in both urinary and plasma CNP, whereas 24% had normal CNP levels. During a median follow-up of 3 years, patients with elevated urinary and plasma CNP had a significantly higher risk of rehospitalization and/or death (HR: 1.79; P = 0.03) and rehospitalization (HR: 2.16; P = 0.01) after adjusting for age, sex, left ventricular ejection fraction, renal function, and plasma NT-proBNP. The C-statistic and integrated discrimination analyses further supported that the addition of urinary and plasma CNP to established risk models improved the prediction of adverse outcomes in patients with ADHF. CONCLUSIONS: Urinary and plasma CNP are differentially regulated in ADHF, and elevations in both provided independent prognostic value for predicting adverse outcomes.


Asunto(s)
Insuficiencia Cardíaca , Péptido Natriurético Tipo-C , Enfermedad Aguda , Biomarcadores , Humanos , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda
10.
Hypertension ; 77(3): 882-890, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33461312

RESUMEN

The importance of canonical versus noncanonical mechanisms for the generation of angiotensins remains a major challenge that, in part, is heavily swayed by the relative efficacy of therapies designed to inhibit renin, ACE (angiotensin-converting enzyme), or the Ang II (Angiotensin II) receptor. Ang (1-12) (angiotensin [1-12]) is an Ang II forming substrate serving as a source for Ang II-mediated tissue actions. This study identifies for the first time the presence of Ang (1-12) in the blood of 52 normal (22 women) and 19 (13 women) patients with hypertension not receiving antihypertensive medication at the time of the study. Normal subjects of comparable ages and body habitus had similar circulating plasma Ang (1-12) concentrations (women: 2.02±0.62 [SD] ng/mL; men 2.05±0.55 [SD] ng/mL, P>0.05). The higher values of plasma Ang (1-12) concentrations in hypertensive men (2.51±0.49 ng/mL, n=6) and women (2.33±0.63 [SD] ng/mL, n=13) were statistically significant (P<0.02) and correlated with elevated plasma renin activity, systolic and pulse pressure, and plasma concentrations of NT-proBNP (N-terminal prohormone BNP). The increased plasma Ang (1-12) in patients with hypertension was not mirrored by similar changes in plasma angiotensinogen and Ang II concentrations. The first identification of an age-independent presence of Ang (1-12) in the blood of normotensive subjects and patients with hypertension, irrespective of sex, implicates this non-renin dependent substrate as a source for Ang II production in the blood and its potential contribution to the hypertensive process.


Asunto(s)
Angiotensinógeno/sangre , Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Fragmentos de Péptidos/sangre , Anciano , Angiotensina II/sangre , Femenino , Humanos , Hipertensión/sangre , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Péptido Natriurético Encefálico/sangre , Renina/sangre
11.
JACC Heart Fail ; 9(2): 127-136, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33189632

RESUMEN

OBJECTIVES: This study sought to assess associations between longitudinal change in atrial natriuretic peptide (ANP) and reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with reduced ejection fraction (HFrEF). BACKGROUND: Neprilysin inhibition results in an increase of several vasoactive peptides that may mediate the beneficial effects of sacubitril/valsartan, including ANP. METHODS: In a prospective study of initiation and titration of sacubitril/valsartan in patients with HFrEF, blood was collected at scheduled time points into tubes containing protease inhibitors. This pre-specified exploratory analysis included patients in whom ANP was measured at baseline and serially through 12 months of treatment. RESULTS: Among 144 participants (mean age: 64.5 years; left ventricular ejection fraction: 30.8%), following initiation of sacubitril/valsartan, there was an early and significant increase in ANP, with the majority of rise from 99 pg/ml at baseline to 156 pg/ml at day 14 (p < 0.001). There was a further trend toward a second increase from day 30 to day 45 (p = 0.07). At maximal rise, ANP had doubled. In longitudinal analyses, early rise in ANP was followed by a subsequent increase in urinary cycle guanosine monophosphate. Larger early increase in ANP was associated with larger later improvements in left ventricular ejection fraction and left atrial volume index (p < 0.001 for both). CONCLUSIONS: Concentrations of ANP doubled after initiation of sacubitril/valsartan in patients with HFrEF. Larger early increases in ANP were associated with a greater magnitude of subsequent reverse cardiac remodeling. (Effects of Sacubitril/Valsartan Therapy on Biomarkers, Myocardial Remodeling and Outcomes [PROVE-HF]; NCT02887183).


Asunto(s)
Factor Natriurético Atrial , Insuficiencia Cardíaca , Aminobutiratos , Antagonistas de Receptores de Angiotensina/uso terapéutico , Compuestos de Bifenilo , Combinación de Medicamentos , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Volumen Sistólico , Tetrazoles/uso terapéutico , Resultado del Tratamiento , Valsartán , Función Ventricular Izquierda
12.
J Card Fail ; 26(8): 727-732, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32473378

RESUMEN

OBJECTIVES: This study sought to identify the role of annexin A1 (AnxA1) as a congestion marker in acute heart failure (AHF) and to identify its putative role in predicting clinical outcomes. BACKGROUND: AnxA1 is a protein that inhibits inflammation following ischemia-reperfusion injury in cardiorenal tissues. Because AHF is a state of tissue hypoperfusion, we hypothesized that plasma AnxA1 levels are altered in AHF. METHODS: In the Renal Optimization Strategies Evaluation (ROSE) trial, patients hospitalized for AHF with kidney injury were randomized to receive dopamine, nesiritide, or placebo for 72 hours in addition to diuresis. In a subanalysis, plasma AnxA1 levels were measured at baseline and at 72 hours in 275 patients. Participants were divided into 3 tertiles based on their baseline AnxA1 levels. RESULTS: The prevalence of peripheral edema 2+ increased with increasing AnxA1 levels (P < .007). Cystatin C, blood urea nitrogen, and kidney injury molecule-1 plasma levels were higher among participants in tertile 3 vs tertiles 1 or 2 (P< .05). Patients with a congestion score of 4 had a mean baseline AnxA1 level 8.63 units higher than those with a congestion score of 0 (P = .03). Patients in tertiles 2 and 3 were twice as likely to experience creatinine elevation as patients in tertile 1 (P = .03). Patients in tertiles 2 and 3 were at a higher risk of 60-day all-cause mortality or heart failure hospitalization and 180-day all-cause mortality (P < .05). CONCLUSIONS: Among patients hospitalized for AHF with impaired kidney function, elevated AnxA1 levels are associated with worse congestion, higher risk for further creatinine elevation, and higher rates of 60-day morbidity or all-cause mortality and 180-day all-cause mortality. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01132846.


Asunto(s)
Anexina A1 , Insuficiencia Cardíaca , Enfermedad Aguda , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/epidemiología , Humanos , Péptido Natriurético Encefálico , Resultado del Tratamiento
13.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R669-R676, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32022596

RESUMEN

Based on the cardiac hormone atrial natriuretic peptide (ANP) and its seminal role in blood pressure (BP) homeostasis, we investigated the chronic BP lowering actions of a novel ANP analog currently entering clinical trials for hypertension. Previous reports demonstrate that this analog MANP activates the guanylyl cyclase A receptor (GC-A) and results in more potent biological actions compared with ANP; thus, it may represent a new therapeutic drug for hypertension. A major goal of this study was to establish that chronic subcutaneous delivery of MANP is feasible and hypotensive together with cGMP effects. We investigated the BP-lowering and cGMP-activating actions of acute and chronic subcutaneous delivery in normal and hypertensive rats. Furthermore, we explored vascular mechanisms of MANP in human aortic smooth muscle cells (HASMC) and ex vivo in isolated arteries. In normal rats with a single subcutaneous injection, MANP promoted robust dose-dependent BP-lowering actions and natriuresis, together with cGMP activation. Most importantly in hypertensive rats, once-a-day subcutaneous injection of MANP for 7 days induced cGMP elevation and long-term BP reduction compared with vehicle. Mechanistically, in HASMC, MANP activated cGMP and attenuated angiotensin II-mediated increases in intracellular Ca2+ levels while directly vasorelaxing arterial rings. Our study demonstrates for the first time the effectiveness of subcutaneous administration of MANP for 7 days and provides innovative, vascular mechanisms of BP regulation supporting its continued development as a novel therapeutic for hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , GMP Cíclico/metabolismo , Péptidos Natriuréticos/síntesis química , Péptidos Natriuréticos/farmacología , Animales , Perros , Arteria Femoral/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/fisiología , Masculino , Péptidos Natriuréticos/química , Neurotransmisores/orina , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
14.
JACC Heart Fail ; 8(1): 70-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31392960

RESUMEN

BACKGROUND: In heart failure with reduced ejection fraction (HFrEF), elevated soluble neprilysin (sNEP) levels are associated with an increased risk of cardiovascular death, and its inhibition with sacubitril/valsartan has improved survival. OBJECTIVES: This study sought to determine the relevance of sNEP as a biomarker in heart failure with preserved ejection fraction (HFpEF) and to compare circulating sNEP levels in patients with HFpEF with normal controls. METHODS: A case-control study was performed in 242 symptomatic patients with HFpEF previously enrolled in the Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure with Preserved Ejection Fraction (RELAX) and Nitrates's Effect on Activity Tolerance in Heart Failure With Preserved Ejection (NEAT-HFpEF) clinical trials and 891 asymptomatic subjects without HF or diastolic dysfunction (confirmed by NT-proBNP levels <200 pg/ml and echocardiography) who were enrolled in the Prevalence of Asymptomatic Left Ventricular Dysfunction study. sNEP was measured using a sandwich enzyme-linked immunosorbent assay (ELISA) in all subjects. RESULTS: Overall, sNEP levels were lower in HFpEF compared with controls (3.5 ng/ml; confidence interval [CI]: 2.5 to 4.8 vs. 8.5 ng/ml; CI: 7.2 to 10.0; p < 0.001). After adjusting for age, gender, body mass index (BMI), and smoking history, mean sNEP levels were also lower in HFpEF compared with controls (4.0 ng/ml [CI: 2.7 to 5.4] vs. 8.2 ng/ml [CI: 6.8 to 9.7]; p = 0.002). The cohorts were propensity matched based on age, BMI, diabetes, hypertension, smoking history, and renal function, and sNEP levels remained lower in HFpEF compared with controls (median 2.4 ng/ml [interquartile range: 0.6 to 27.7] vs. 4.9 ng/ml [interquartile range: 1.2 to 42.2]; p = 0.02). CONCLUSIONS: Patients with HFpEF on average have significantly lower circulating sNEP levels compared with controls. These findings challenge our current understanding of the complex biology of circulating sNEP in HFpEF.


Asunto(s)
Aminobutiratos/uso terapéutico , Insuficiencia Cardíaca/sangre , Neprilisina/sangre , Volumen Sistólico/fisiología , Tetrazoles/uso terapéutico , Anciano , Antagonistas de Receptores de Angiotensina/uso terapéutico , Biomarcadores/sangre , Compuestos de Bifenilo , Estudios de Casos y Controles , Combinación de Medicamentos , Ecocardiografía , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Neprilisina/antagonistas & inhibidores , Valsartán , Función Ventricular Izquierda/fisiología
16.
JACC Heart Fail ; 7(10): 891-898, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31521687

RESUMEN

OBJECTIVES: This study investigated the differential regulation of circulating atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in patients with acute decompensated heart failure (ADHF) and tested the hypothesis that a relative deficiency of ANP exists in a subgroup of patients with ADHF. BACKGROUND: The endocrine heart releases the cardiac hormones ANP and BNP, which play a key role in cardiovascular (CV), renal, and metabolic homeostasis. In heart failure (HF), both plasma ANP and BNP are increased as a compensatory homeostatic response to myocardial overload. METHODS: ANP and BNP concentrations were measured in a small group of patients with ADHF (n = 112). To support this study's goal, a total of 129 healthy subjects were prospectively recruited to establish contemporary normal values for ANP and BNP. Plasma 3',5'cyclic guanosine monophosphate (cGMP), ejection fraction (EF), and body mass index (BMI) were measured in these subjects. RESULTS: In cases of ADHF, 74% of patients showed elevated ANP and BNP. Importantly, 26% of patients were characterized as having normal ANP (21% of this subgroup had normal ANP and elevated BNP). Cyclic GMP was lowest in the ADHF group with normal levels of ANP (p < 0.001), whereas BMI and EF were inversely related to ANP levels (p = 0.003). CONCLUSIONS: Among a subgroup of patients hospitalized with ADHF, the presence of an ANP deficiency is consistent with a differential regulation of ANP and BNP and suggests the existence of a potentially compromised compensatory cardiac endocrine response. These findings have implications for the pathophysiology, diagnostics, and therapeutics of human HF.


Asunto(s)
Factor Natriurético Atrial/sangre , Insuficiencia Cardíaca/sangre , Péptido Natriurético Encefálico/sangre , Anciano , Anciano de 80 o más Años , Factor Natriurético Atrial/deficiencia , Índice de Masa Corporal , Estudios de Casos y Controles , GMP Cíclico/sangre , Femenino , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Volumen Sistólico
17.
J Am Heart Assoc ; 8(15): e012943, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31345101

RESUMEN

Background Neprilysin is a metalloprotease involved in proteolysis of numerous peptides, including natriuretic peptides, and is of prognostic and therapeutic importance in heart failure with reduced ejection fraction. No studies have investigated circulating neprilysin in the community, its clinical correlates, or its relationship to cardiovascular disease in the general population. Methods and Results Plasma neprilysin was measured in 1536 participants from Olmsted County, Minnesota, using a commercially available sandwich ELISA assay. Clinical and echocardiographic correlates and subsequent outcomes were determined. Soluble neprilysin is non-normally distributed in the community (median: 3.9 ng/mL; interquartile range: 1.0-43.0 ng/mL). There was no relationship between plasma neprilysin and age (Spearman correlation: -0.04, P=0.16); body mass index (Spearman correlation: -0.04, P=0.16); glomerular filtration rate (Spearman correlation: -0.007, P=0.8); or A-, B-, or C-type natriuretic peptides (Spearman correlation: 0.03, P=0.22; -0.001, P=0.96; 0.01, P=0.67, respectively). Among tertiles of neprilysin, the lowest tertile group had the highest prevalence of smokers (P<0.001), hypertension (P=0.04), dyslipidemia (P=0.03), and diastolic dysfunction (P=0.02). Soluble neprilysin was not prospectively associated with death or heart failure over a median of 10.7 years. Conclusions In a large community-based cohort, for the first time, we described the distribution of circulating neprilysin in the general community. We observed that neprilysin does not correlate with natriuretic peptide levels and is not independently associated with adverse outcomes. The novel associations observed between low soluble neprilysin levels and an adverse cardiometabolic and smoking profile requires further investigation.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Neprilisina/sangre , Anciano , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Biol Chem ; 294(34): 12567-12578, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31186350

RESUMEN

Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.


Asunto(s)
Factor Natriurético Atrial/sangre , Polisacáridos/metabolismo , Proteolisis , Animales , Glicoproteínas/metabolismo , Glicosilación , Humanos , Masculino , Estabilidad Proteica , Ratas Sprague-Dawley , Porcinos
19.
Circ Res ; 124(10): 1462-1472, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30929579

RESUMEN

RATIONALE: Acute kidney injury (AKI) has a high prevalence and mortality in critically ill patients. It is also a powerful risk factor for heart failure incidence driven by hemodynamic changes and neurohormonal activation. However, no drugs have been approved by the Food and Drug Administration. Endogenous pGC-A (particulate guanylyl cyclase A receptor) activators were reported to preserve renal function and improve mortality in AKI patients, although hypotension accompanied by pGC-A activators have limited their therapeutic potential. OBJECTIVE: We investigated the therapeutic potential of a nonhypotensive pGC-A activator/designer natriuretic peptide, CRRL269, in a short-term, large animal model of ischemia-induced AKI and also investigated the potential of uCNP (urinary C-type natriuretic peptide) as a biomarker for AKI. METHODS AND RESULTS: We first showed that CRRL269 stimulated cGMP generation, suppressed plasma angiotensin II, and reduced cardiac filling pressures without lowering blood pressure in the AKI canine model. We also demonstrated that CRRL269 preserved glomerular filtration rate, increased renal blood flow, and promoted diuresis and natriuresis. Further, CRRL269 reduced kidney injury and apoptosis as evidenced by ex vivo histology and tissue apoptosis analysis. We also showed, compared with native pGC-A activators, that CRRL269 is a more potent inhibitor of apoptosis in renal cells and induced less decreases in intracellular Ca2+ concentration in vascular smooth muscle cells. The renal antiapoptotic effects were at least mediated by cGMP/PKG pathway. Further, CRRL269 inhibited proapoptotic genes expression using a polymerase chain reaction gene array. Additionally, we demonstrated that AKI increased uCNP levels. CONCLUSIONS: Our study supports developing CRRL269 as a novel renocardiac protective agent for AKI treatment.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/orina , Péptido Natriurético Tipo-C/orina , Péptidos Natriuréticos/uso terapéutico , Fármacos Renales/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Angiotensina II/sangre , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/orina , Presión Sanguínea/fisiología , GMP Cíclico/biosíntesis , Diuresis/efectos de los fármacos , Perros , Tasa de Filtración Glomerular/efectos de los fármacos , Masculino , Natriuresis/efectos de los fármacos , Péptidos Natriuréticos/farmacología , Receptores del Factor Natriurético Atrial/análisis , Receptores del Factor Natriurético Atrial/efectos de los fármacos , Circulación Renal/efectos de los fármacos
20.
J Mol Cell Cardiol ; 130: 140-150, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30954448

RESUMEN

The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFß-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Riñón/metabolismo , Miocardio/metabolismo , Sistemas de Mensajero Secundario , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Ciclo Celular/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Fibroblastos/patología , Fibrosis , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Riñón/patología , Masculino , Miocardio/patología , Ratas , Ratas Endogámicas F344 , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...