RESUMEN
Sustainability and circularity are key issues facing the global polymer industry. The search for biodegradable and environmentally-friendly polymers that can replace conventional materials is a difficult challenge that has been met with limited success. Alternatives must be cost-effective, scalable, and provide equivalent performance. We report that latexes made by the conventional emulsion polymerization of vinyl acetate and functional vinyl ester monomers are efficient thickeners for consumer products and biodegrade in wastewater. This approach uses readily-available starting materials and polymerization is carried out in water at room temperature, in one pot, and generates negligible waste. Moreover, the knowledge that poly(vinyl ester)s are biodegradable will lead to the design of new green polymer materials.
Asunto(s)
Emulsiones , Emulsiones/química , Polimerizacion , Polímeros/química , Álcalis/química , Biodegradación Ambiental , Látex/química , Compuestos de Vinilo/química , Aguas Residuales/químicaRESUMEN
We demonstrate that small unidirectional applied-stresses during temperature-induced gelation dramatically change the gel temperature and the resulting mechanical properties and structure of aqueous methylcellulose (MC), a material that forms a brittle gel with a fibrillar microstructure at elevated temperatures. Applied stress makes gelation more difficult, evidenced by an increased gelation temperature, and weakens mechanical properties of the hot gel, evidenced by a decreased elastic modulus and decreased apparent failure stress. In extreme cases, formation of a fully percolated polymer network is inhibited and a soft granular yield-stress fluid is formed. We quantify the effects of the applied stress using a filament-based mechanical model to relate the measured properties to the structural features of the fibril network. The dramatic changes in the gel temperature and hot gel properties give more design freedom to processing-dependent rheology, but could be detrimental to coating applications where gravitational stress during gelation is unavoidable.
RESUMEN
The interaction of amyloid ß-peptide (Aß) with cell membranes is believed to play a central role in the pathogenesis of Alzheimer's disease. In particular, recent experimental evidence indicates that bilayer and monolayer membranes accelerate the aggregation and amyloid fibril formation rate of Aß. Understanding that interaction could help develop therapeutic strategies for treatment of the disease. Trehalose, a disaccharide of glucose, has been shown to be effective in preventing the aggregation of numerous proteins. It has also been shown to delay the onset of certain amyloid-related diseases in a mouse model. Using Langmuir monolayers and molecular simulations of the corresponding system, we study several thermodynamic and kinetic aspects of the insertion of Aß peptide into DPPG monolayers in water and trehalose subphases. In the water subphase, the insertion of the Aß peptide into the monolayer exhibits a lag time which decreases with increasing temperature of the subphase. In the presence of trehalose, the lag time is completely eliminated and peptide insertion is completed within a shorter time period compared to that observed in pure water. Molecular simulations show that more peptide is inserted into the monolayer in the water subphase, and that such insertion is deeper. The peptide at the monolayer interface orients itself parallel to the monolayer, while it inserts with an angle of 50° in the trehalose subphase. Simulations also show that trehalose reduces the conformational change that the peptide undergoes when it inserts into the monolayer. This observation helps explain the experimentally observed elimination of the lag time by trehalose and the temperature dependence of the lag time in the water subphase.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/química , Trehalosa/química , Animales , Aniones , Simulación por Computador , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Péptidos/química , Fosfatidilgliceroles/química , Temperatura , Factores de TiempoRESUMEN
A growing body of experimental evidence indicates that the interaction between amyloid beta peptide and lipid bilayer membranes plays an important role in the development of Alzheimer disease. Recent experimental evidence also suggests that trehalose, a simple disaccharide, reduces the toxicity of amyloid beta peptide. Molecular simulations are used to examine the effect of trehalose on the conformational stability of amyloid beta peptide in aqueous solution and its effect on the interaction between amyloid beta peptide and a model phospholipid bilayer membrane. It is found that, in aqueous solution, the peptide exhibits a random coil conformation but, in the presence of trehalose, it adopts an alpha helical conformation. It is then shown that the insertion of amyloid beta peptide into a membrane is more favorable when the peptide is folded into an alpha-helix than in a random coil conformation, thereby suggesting that trehalose promotes the insertion of alpha-helical amyloid beta into biological membranes.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Fragmentos de Péptidos/metabolismo , Trehalosa/farmacología , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fragmentos de Péptidos/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Agua/metabolismoRESUMEN
In this work, we investigate the effect of hydrodynamic interactions on the dynamics of DNA translocation through micropores. We simulate DNA as a bead-spring chain and use a lattice Boltzmann method to simulate the flow field that arises from the motion of the molecule. We investigate the free-draining entrance of DNA to the pore by diffusion and find that, consistent with experiments, molecules have a higher probability of entering the pore from one end. We then consider the electric-field driven translocation of 21-210 microm DNA with and without hydrodynamic interactions. Consistent with experiments, we study translocation events that are much shorter than the relaxation time of DNA. We find that the effect of hydrodynamic interactions on this process is to cause different regions of a molecule, other than the ones pulled by voltage or chain connectivity into the pore, to move toward the pore. We quantify this effect and show that it is smaller than the difference in the translocation dynamics of chains that arises from different initial configurations of the molecules. A power-law scaling of translocation time with chain length is observed, with exponents of 1.28+/-0.03 and 1.31+/-0.03 in simulations with and without hydrodynamic interactions, respectively. Our results are in good agreement with recent translocation experiments conducted in small pores and show that, for the regime considered in this work, hydrodynamic interactions play a minor role in the relation of the translocation time to chain length. For fast translocation processes, the effect of hydrodynamic interactions is local and the main factor determining the dynamics of DNA is the initial configuration of the molecules.