Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Adv Sci (Weinh) ; 11(18): e2309515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430530

RESUMEN

The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.


Asunto(s)
Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Humanos , Lactonas/metabolismo , Lactonas/química
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542220

RESUMEN

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Esfingomielina Fosfodiesterasa , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Ácido Oléico/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T/metabolismo , Triglicéridos/metabolismo
3.
Int Immunol ; 35(11): 543-554, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37549964

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells mainly found in the mucosa and peripheral blood. We have recently demonstrated that Clostridioides difficile activates MAIT cells in vitro. However, their role in the pathogenesis of C. difficile infection (CDI) in human patients remains elusive to date. In this study, we performed comprehensive immunophenotyping of MAIT cells derived from CDI patients and compared their phenotype to that of patients with inflammatory bowel diseases (IBD) and healthy controls. Our study revealed that blood MAIT cells from CDI patients exhibit an interleukin 17a (IL-17a)-dominated proinflammatory phenotype and an increased readiness to synthesize the proinflammatory cytokine interferon γ (IFN-γ) following in vitro re-stimulation. Moreover, the cytotoxic activity of MAIT cells, as measured by surface CD107a and intracellular granzyme B expression, was strongly increased in CDI. Multi epitope ligand cartography (MELC) analysis of intestinal biopsies from CDI patients revealed that MAIT cells exhibit an increased production of granzyme B and increased cytotoxicity compared to the control group. Together with previously published in vitro data from our group, our findings suggest that MAIT cells are functionally involved in the immune response against C. difficile and contribute to the pathogenesis of CDI.


Asunto(s)
Antineoplásicos , Clostridioides difficile , Células T Invariantes Asociadas a Mucosa , Humanos , Clostridioides difficile/metabolismo , Granzimas/metabolismo , Citocinas/metabolismo , Fenotipo
4.
Eur J Immunol ; 53(11): e2250291, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37515498

RESUMEN

Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.


Asunto(s)
Antivirales , Hepatitis C Crónica , Humanos , Antivirales/uso terapéutico , Antivirales/metabolismo , Hepatitis C Crónica/tratamiento farmacológico , Proteómica , Células Asesinas Naturales , Fenotipo , Hepacivirus
5.
J Virol ; 97(6): e0040023, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37289084

RESUMEN

Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35's function. Determination of M35's crystal structure combined with reverse genetics revealed that homodimerization is a key feature for M35's immunomodulatory activity. In electrophoretic mobility shift assays (EMSAs), purified M35 protein specifically bound to the regulatory DNA element that governs transcription of the first type I IFN gene induced in nonimmune cells, Ifnb1. DNA-binding sites of M35 overlapped with the recognition elements of interferon regulatory factor 3 (IRF3), a key transcription factor activated by PRR signaling. Chromatin immunoprecipitation (ChIP) showed reduced binding of IRF3 to the host Ifnb1 promoter in the presence of M35. We furthermore defined the IRF3-dependent and the type I IFN signaling-responsive genes in murine fibroblasts by RNA sequencing of metabolically labeled transcripts (SLAM-seq) and assessed M35's global effect on gene expression. Stable expression of M35 broadly influenced the transcriptome in untreated cells and specifically downregulated basal expression of IRF3-dependent genes. During MCMV infection, M35 impaired expression of IRF3-responsive genes aside of Ifnb1. Our results suggest that M35-DNA binding directly antagonizes gene induction mediated by IRF3 and impairs the antiviral response more broadly than formerly recognized. IMPORTANCE Replication of the ubiquitous human cytomegalovirus (HCMV) in healthy individuals mostly goes unnoticed but can impair fetal development or cause life-threatening symptoms in immunosuppressed or -deficient patients. Like other herpesviruses, CMV extensively manipulates its hosts and establishes lifelong latent infections. Murine CMV (MCMV) presents an important model system as it allows the study of CMV infection in the host organism. We previously showed that during entry into host cells, MCMV virions release the evolutionary conserved protein M35 protein to immediately dampen the antiviral type I interferon (IFN) response induced by pathogen detection. Here, we show that M35 dimers bind to regulatory DNA elements and interfere with recruitment of interferon regulatory factor 3 (IRF3), a key cellular factor for antiviral gene expression. Thereby, M35 interferes with expression of type I IFNs and other IRF3-dependent genes, reflecting the importance for herpesviruses to avoid IRF3-mediated gene induction.


Asunto(s)
Infecciones por Citomegalovirus , Elementos de Facilitación Genéticos , Factor 3 Regulador del Interferón , Interferón Tipo I , Proteínas de la Matriz Viral , Animales , Humanos , Ratones , Infecciones por Citomegalovirus/genética , ADN/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Muromegalovirus/genética , Muromegalovirus/metabolismo , Proteínas de la Matriz Viral/metabolismo
6.
FEBS Lett ; 597(13): 1792-1801, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247262

RESUMEN

Human aldehyde oxidase (hAOX1) is a molybdoenzyme that oxidizes aldehydes and N-heterocyclic compounds, thereby generating hydrogen peroxide (H2 O2 ) and superoxide during turnover. hAOX1 has been shown previously to be inactivated under turnover conditions by H2 O2 . Here, we investigated the effect of exogenously added H2 O2 on the activity of hAOX1. We show that exogenously added H2 O2 did not affect the enzyme activity under aerobic conditions, but completely inactivated the enzyme under anaerobic conditions. We propose that this effect is based on the reducing power of H2 O2 and the susceptibility of the reduced molybdenum cofactor (Moco) to lose the sulfido ligand. When oxygen is present, the enzyme is rapidly reoxidized. We believe that our study is significant in understanding the detailed effect of reactive oxygen species on the inactivation of hAOX1 and other molybdoenzymes.


Asunto(s)
Aldehído Oxidasa , Coenzimas , Humanos , Especies Reactivas de Oxígeno , Superóxidos , Oxígeno , Peróxido de Hidrógeno/farmacología
7.
Drug Metab Dispos ; 51(6): 764-770, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37012073

RESUMEN

Human aldehyde oxidase (hAOX1) is a molybdoflavoenzyme that belongs to the xanthine oxidase (XO) family. hAOX1 is involved in phase I drug metabolism, but its physiologic role is not fully understood to date, and preclinical studies consistently underestimated hAOX1 clearance. In the present work, we report an unexpected effect of the common sulfhydryl-containing reducing agents, e.g., dithiothreitol (DTT), on the activity of hAOX1 and mouse aldehyde oxidases. We demonstrate that this effect is due to the reactivity of the sulfido ligand bound at the molybdenum cofactor with the sulfhydryl groups. The sulfido ligand coordinated to the Mo atom in the XO family of enzymes plays a crucial role in the catalytic cycle and its removal results in the total inactivation of these enzymes. Because liver cytosols, S9 fractions, and hepatocytes are commonly used to screen the drug candidates for hAOX1, our study suggests that DTT treatment of these samples should be avoided, otherwise false negative results by an inactivated hAOX1 might be obtained. SIGNIFICANCE STATEMENT: This work characterizes the inactivation of human aldehyde oxidase (hAOX1) by sulfhydryl-containing agents and identifies the site of inactivation. The role of dithiothreitol in the inhibition of hAOX1 should be considered for the preparation of hAOX1-containing fractions for pharmacological studies on drug metabolism and drug clearance.


Asunto(s)
Aldehído Oxidasa , Sustancias Reductoras , Humanos , Animales , Ratones , Aldehído Oxidasa/metabolismo , Ligandos , Ditiotreitol/farmacología , Coenzimas , Xantina Oxidasa
8.
Front Immunol ; 14: 1091837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875139

RESUMEN

MAIT cells are multifunctional innate-like effector cells recognizing bacterial-derived vitamin B metabolites presented by the non-polymorphic MHC class I related protein 1 (MR1). However, our understanding of MR1-mediated responses of MAIT cells upon their interaction with other immune cells is still incomplete. Here, we performed the first translatome study of primary human MAIT cells interacting with THP-1 monocytes in a bicellular system. We analyzed the interaction between MAIT and THP-1 cells in the presence of the activating 5-OP-RU or the inhibitory Ac-6-FP MR1-ligand. Using bio-orthogonal non-canonical amino acid tagging (BONCAT) we were able to enrich selectively those proteins that were newly translated during MR1-dependent cellular interaction. Subsequently, newly translated proteins were measured cell-type-specifically by ultrasensitive proteomics to decipher the coinciding immune responses in both cell types. This strategy identified over 2,000 MAIT and 3,000 THP-1 active protein translations following MR1 ligand stimulations. Translation in both cell types was found to be increased by 5-OP-RU, which correlated with their conjugation frequency and CD3 polarization at MAIT cell immunological synapses in the presence of 5-OP-RU. In contrast, Ac-6-FP only regulated a few protein translations, including GSK3B, indicating an anergic phenotype. In addition to known effector responses, 5-OP-RU-induced protein translations uncovered type I and type II Interferon-driven protein expression profiles in both MAIT and THP-1 cells. Interestingly, the translatome of THP-1 cells suggested that activated MAIT cells can impact M1/M2 polarization in these cells. Indeed, gene and surface expression of CXCL10, IL-1ß, CD80, and CD206 confirmed an M1-like phenotype of macrophages being induced in the presence of 5-OP-RU-activated MAIT cells. Furthermore, we validated that the Interferon-driven translatome was accompanied by the induction of an antiviral phenotype in THP-1 cells, which were found able to suppress viral replication following conjugation with MR1-activated MAIT cells. In conclusion, BONCAT translatomics extended our knowledge of MAIT cell immune responses at the protein level and discovered that MR1-activated MAIT cells are sufficient to induce M1 polarization and an anti-viral program of macrophages.


Asunto(s)
Antivirales , Células T Invariantes Asociadas a Mucosa , Humanos , Monocitos , Aminoácidos , Ligandos , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor
9.
Glia ; 71(3): 682-703, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36401581

RESUMEN

Astrocytes exhibit regional heterogeneity in morphology, function and molecular composition to support and modulate neuronal function and signaling in a region-specific manner. To characterize regional heterogeneity of astrocytic proteomes of different brain regions we established an inducible Aldh1l1-methionyl-tRNA-synthetaseL274G (MetRSL274G ) mouse line that allows astrocyte-specific metabolic labeling of newly synthesized proteins by azidonorleucine (ANL) in vivo and subsequent isolation of tagged proteins by click chemistry. We analyzed astrocytic proteins from four different brain regions by mass spectrometry. The induced expression of MetRSL274G is restricted to astrocytes and identified proteins show a high overlap with proteins compiled in "AstroProt," a newly established database for astrocytic proteins. Gene enrichment analysis reveals a high similarity among brain regions with subtle differences in enriched biological processes and in abundances of key astrocytic proteins for hippocampus, cortex and striatum. However, the cerebellar proteome stands out with proteins being highly associated with the calcium signaling pathway or with bipolar disorder. Subregional analysis of single astrocyte TAMRA intensities in hippocampal layers indicates distinct subregional heterogeneity of astrocytes and highlights the applicability of our toolbox to study differences of astrocytic proteomes in vivo.


Asunto(s)
Astrocitos , Metionina-ARNt Ligasa , Ratones , Animales , Astrocitos/metabolismo , Proteoma/genética , Proteómica/métodos , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Hipocampo/metabolismo
10.
Nat Commun ; 13(1): 7402, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456567

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals.


Asunto(s)
Pliegue de Proteína , Pseudomonas aeruginosa , Virulencia , Pseudomonas aeruginosa/genética , Factores de Transcripción
11.
iScience ; 24(12): 103469, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34812415

RESUMEN

Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.

12.
PLoS Genet ; 17(6): e1009585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061833

RESUMEN

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteogenómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Simulación por Computador , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Péptido Hidrolasas/metabolismo , Filogenia , Staphylococcus aureus/genética
13.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806079

RESUMEN

We focus on the stalked goose barnacle L. anatifera adhesive system, an opportunistic less selective species for the substrate, found attached to a variety of floating objects at seas. Adhesion is an adaptative character in barnacles, ensuring adequate positioning in the habitat for feeding and reproduction. The protein composition of the cement multicomplex and adhesive gland was quantitatively studied using shotgun proteomic analysis. Overall, 11,795 peptide sequences were identified in the gland and 2206 in the cement, clustered in 1689 and 217 proteinGroups, respectively. Cement specific adhesive proteins (CPs), proteases, protease inhibitors, cuticular and structural proteins, chemical cues, and many unannotated proteins were found, among others. In the cement, CPs were the most abundant (80.5%), being the bulk proteins CP100k and -52k the most expressed of all, and CP43k-like the most expressed interfacial protein. Unannotated proteins comprised 4.7% of the cement proteome, ranking several of them among the most highly expressed. Eight of these proteins showed similar physicochemical properties and amino acid composition to known CPs and classified through Principal Components Analysis (PCA) as new CPs. The importance of PCA on the identification of unannotated non-conserved adhesive proteins, whose selective pressure is on their relative amino acid abundance, was demonstrated.


Asunto(s)
Adhesivos , Péptidos/metabolismo , Proteogenómica , Proteoma , Thoracica/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Análisis por Conglomerados , Ecosistema , Peso Molecular , Análisis de Componente Principal , Proteómica/métodos
14.
mSphere ; 6(2)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658275

RESUMEN

The human pathogen Clostridioides difficile has evolved into the leading cause of nosocomial diarrhea. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Although C. difficile features an anaerobic lifestyle, we determined a remarkably high oxygen tolerance of the laboratory reference strain 630Δerm A mutation of a single nucleotide (single nucleotide polymorphism [SNP]) in the DNA sequence (A to G) of the gene encoding the regulatory protein PerR results in an amino acid substitution (Thr to Ala) in one of the helices of the helix-turn-helix DNA binding domain of this transcriptional repressor in C. difficile 630Δerm PerR is a sensor protein for hydrogen peroxide and controls the expression of genes involved in the oxidative stress response. We show that PerR of C. difficile 630Δerm has lost its ability to bind the promoter region of PerR-controlled genes. This results in a constitutive derepression of genes encoding oxidative stress proteins such as a rubrerythrin (rbr1) whose mRNA abundance under anaerobic conditions was increased by a factor of about 7 compared to its parental strain C. difficile 630. Rubrerythrin repression in strain 630Δerm could be restored by the introduction of PerR from strain 630. The permanent oxidative stress response of C. difficile 630Δerm observed here should be considered in physiological and pathophysiological investigations based on this widely used model strain.IMPORTANCE The intestinal pathogen Clostridioides difficile is one of the major challenges in medical facilities nowadays. In order to better combat the bacterium, detailed knowledge of its physiology is mandatory. C. difficile strain 630Δerm was generated in a laboratory from the patient-isolated strain C. difficile 630 and represents a reference strain for many researchers in the field, serving as the basis for the construction of insertional gene knockout mutants. In our work, we demonstrate that this strain is characterized by an uncontrolled oxidative stress response as a result of a single-base-pair substitution in the sequence of a transcriptional regulator. C. difficile researchers working with model strain 630Δerm should be aware of this permanent stress response.


Asunto(s)
Clostridioides difficile/genética , Estrés Oxidativo/genética , Mutación Puntual , Proteínas Represoras/genética , Factores de Transcripción/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Virulencia/genética
15.
EMBO J ; 40(4): e105202, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33410511

RESUMEN

Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused ß-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carcinoma de Células Escamosas/patología , Citosol/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Neoplasias Laríngeas/patología , Yersinia pseudotuberculosis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transporte Biológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiología , Cristalización , Cristalografía por Rayos X , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/microbiología , Conformación Proteica , Células Tumorales Cultivadas
16.
Front Microbiol ; 12: 752549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992584

RESUMEN

Clostridioides difficile is the major cause of antibiotic-associated colitis (CDAC) with increasing prevalence in morbidity and mortality. Severity of CDAC has been attributed to hypervirulent C. difficile strains, which in addition to toxin A and B (TcdA, TcdB) produce the binary toxin C. difficile transferase (CDT). However, the link between these toxins and host immune responses as potential drivers of immunopathology are still incompletely understood. Here, we provide first experimental evidence that C. difficile toxins efficiently activate human mucosal-associated invariant T (MAIT) cells. Among the tested toxins, CDT and more specifically, the substrate binding and pore-forming subunit CDTb provoked significant MAIT cell activation resulting in selective MAIT cell degranulation of the lytic granule components perforin and granzyme B. CDT-induced MAIT cell responses required accessory immune cells, and we suggest monocytes as a potential CDT target cell population. Within the peripheral blood mononuclear cell fraction, we found increased IL-18 levels following CDT stimulation and MAIT cell response was indeed partly dependent on this cytokine. Surprisingly, CDT-induced MAIT cell activation was found to be partially MR1-dependent, although bacterial-derived metabolite antigens were absent. However, the role of antigen presentation in this process was not analyzed here and needs to be validated in future studies. Thus, MR1-dependent induction of MAIT cell cytotoxicity might be instrumental for hypervirulent C. difficile to overcome cellular barriers and may contribute to pathophysiology of CDAC.

17.
FEBS J ; 288(1): 244-261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255259

RESUMEN

Certain facultative anaerobes such as the opportunistic human pathogen Pseudomonas aeruginosa can respire on nitrate, a process generally known as denitrification. This enables denitrifying bacteria to survive in anoxic environments and contributes, for example, to the formation of biofilm, hence increasing difficulties in eradicating P. aeruginosa infections. A central step in denitrification is the reduction of nitrite to nitric oxide by nitrite reductase NirS, an enzyme that requires the unique cofactor heme d1 . While heme d1 biosynthesis is mostly understood, the role of the essential periplasmatic protein NirF in this pathway remains unclear. Here, we have determined crystal structures of NirF and its complex with dihydroheme d1 , the last intermediate of heme d1 biosynthesis. We found that NirF forms a bottom-to-bottom ß-propeller homodimer and confirmed this by multi-angle light and small-angle X-ray scattering. The N termini are adjacent to each other and project away from the core structure, which hints at simultaneous membrane anchoring via both N termini. Further, the complex with dihydroheme d1 allowed us to probe the importance of specific residues in the vicinity of the ligand binding site, revealing residues not required for binding or stability of NirF but essential for denitrification in experiments with complemented mutants of a ΔnirF strain of P. aeruginosa. Together, these data suggest that NirF possesses a yet unknown enzymatic activity and is not simply a binding protein of heme d1 derivatives. DATABASE: Structural data are available in PDB database under the accession numbers 6TV2 and 6TV9.


Asunto(s)
Proteínas Bacterianas/química , Hemo/análogos & derivados , Periplasma/genética , Pseudomonas aeruginosa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Desnitrificación/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/biosíntesis , Hemo/química , Modelos Moleculares , Periplasma/química , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
18.
Biochem J ; 477(23): 4635-4654, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211085

RESUMEN

During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.


Asunto(s)
Proteínas Bacterianas , Bacterioclorofilas , Oxigenasas , Protoporfirinas , Rhodobacter capsulatus , S-Adenosilmetionina , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/biosíntesis , Bacterioclorofilas/química , Bacterioclorofilas/genética , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/metabolismo , Protoporfirinas/biosíntesis , Protoporfirinas/química , Protoporfirinas/genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
19.
Sci Rep ; 10(1): 15267, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943681

RESUMEN

The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex-enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS). Immunoblot and fluorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35-100.0%) and specificity (CI 78.20-100.0%), confirming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specific antibodies against it offer new opportunities to improve the detection of Listeria.


Asunto(s)
Bacteriófagos/inmunología , Listeria/inmunología , Complejo Piruvato Deshidrogenasa/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Técnicas de Visualización de Superficie Celular/métodos , Epítopos/inmunología , Escherichia coli/inmunología , Immunoblotting/métodos , Biblioteca de Péptidos , Anticuerpos de Cadena Única/inmunología
20.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839186

RESUMEN

Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection toward various forms of environmental stresses to individual cells. Thus, bacterial cells within biofilms become tolerant against antimicrobials and the immune system. In the present study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry, and rough) biofilm formation of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium ATCC 14028 (Nalr) at a 1.56 µM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 µM in a microaerophilic environment, suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be concomitantly downregulated. Although fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifted the cells toward an apparent oxygen- and energy-depleted status, whereby the metabolism that channels into oxidative phosphorylation was downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and l-arginine catabolism, potentially also to prevent cytosolic acidification, was upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Claritromicina/farmacología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA