Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(8): 1327-1340.e5, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473755

RESUMEN

Growth differentiation factor 15 (GDF15) induces weight loss and increases insulin action in obese rodents. Whether and how GDF15 improves insulin action without weight loss is unknown. Obese rats were treated with GDF15 and displayed increased insulin tolerance 5 h later. Lean and obese female and male mice were treated with GDF15 on days 1, 3, and 5 without weight loss and displayed increased insulin sensitivity during a euglycemic hyperinsulinemic clamp on day 6 due to enhanced suppression of endogenous glucose production and increased glucose uptake in WAT and BAT. GDF15 also reduced glucagon levels during clamp independently of the GFRAL receptor. The insulin-sensitizing effect of GDF15 was completely abrogated in GFRAL KO mice and also by treatment with the ß-adrenergic antagonist propranolol and in ß1,ß2-adrenergic receptor KO mice. GDF15 activation of the GFRAL receptor increases ß-adrenergic signaling, in turn, improving insulin action in the liver and white and brown adipose tissue.


Asunto(s)
Resistencia a la Insulina , Receptores Adrenérgicos beta , Ratones , Ratas , Masculino , Femenino , Animales , Factor 15 de Diferenciación de Crecimiento/farmacología , Obesidad , Tejido Adiposo , Pérdida de Peso , Insulina , Tejido Adiposo Pardo , Hígado
2.
Nature ; 619(7968): 143-150, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380764

RESUMEN

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Asunto(s)
Metabolismo Energético , Factor 15 de Diferenciación de Crecimiento , Músculo Esquelético , Pérdida de Peso , Animales , Humanos , Ratones , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Depresores del Apetito/uso terapéutico , Restricción Calórica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores Adrenérgicos beta/metabolismo , Pérdida de Peso/efectos de los fármacos
3.
Nat Metab ; 4(2): 157-158, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177852
4.
Am J Physiol Endocrinol Metab ; 321(4): E443-E452, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370594

RESUMEN

Growth differentiating factor 15 (GDF15) is expressed in the intestine and is one of the most recently identified satiety peptides. The mechanisms controlling its secretion are unclear. The present study investigated whether plasma GDF15 concentrations are meal-related and if potential responses depend on macronutrient type or are affected by previous bariatric surgery. The study included 1) volunteers ingesting rapidly vs. slowly digested carbohydrates (sucrose vs. isomaltose; n = 10), 2) volunteers who had undergone Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery and unoperated matched controls ingesting a liquid mixed meal (n = 9-10 in each group), and 3) individuals with previous RYGB compared with unoperated controls ingesting isocaloric glucose, fat, or protein (n = 6 in each group). Plasma was collected after an overnight fast and up to 6 h after ingestion (≥12 time points). In cohort 1, fasting GDF15 concentrations were ∼480 pg/mL. Concentrations after sucrose or isomaltose intake did not differ from baseline (P = 0.26 to P > 0.99) and total area under the curves (tAUCs were similar between groups (P = 0.77). In cohort 2, fasting GDF15 concentrations were as follows (pg/mL): RYGB = 540 ± 41.4, SG = 477 ± 36.4, and controls = 590 ± 41.8, with no between-group differences (P = 0.73). Concentrations did not increase at any postprandial time point (over all time factor: P = 0.10) and tAUCs were similar between groups (P = 0.73). In cohort 3, fasting plasma GDF15 was similar among the groups (P > 0.99) and neither glucose, fat, nor protein intake consistently increased the concentrations. In conclusion, we find that plasma GDF15 was not stimulated by meal intake and that fasting concentrations did not differ between RYGB-, SG-, and body mass index (BMI)-matched controls when investigated during the weight stable phase after RYGB and SG.NEW & NOTEWORTHY Our combined data show that GDF15 does not increase in response to a liquid meal. Moreover, we show for the first time that ingestion of sucrose, isomaltose, glucose, fat, or protein also does not increase plasma GDF15 concentrations, questioning the role of GDF15 in regulation of food source preference. Finally, we find that neither fasting nor postprandial plasma GDF15 concentrations are increased in individuals with previous bariatric surgery compared with unoperated body mass index (BMI)-matched controls.


Asunto(s)
Cirugía Bariátrica/métodos , Biomarcadores/sangre , Tracto Gastrointestinal/metabolismo , Factor 15 de Diferenciación de Crecimiento/sangre , Comidas , Obesidad Mórbida/sangre , Adulto , Glucemia/análisis , Índice de Masa Corporal , Estudios de Casos y Controles , Estudios Cruzados , Femenino , Estudios de Seguimiento , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Obesidad Mórbida/patología , Obesidad Mórbida/cirugía , Periodo Posprandial , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto , Pérdida de Peso
5.
Nat Rev Endocrinol ; 17(10): 592-607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34381196

RESUMEN

Growth differentiation factor 15 (GDF15) is a member of the TGFß superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Factor 15 de Diferenciación de Crecimiento/antagonistas & inhibidores , Factor 15 de Diferenciación de Crecimiento/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Terapia Molecular Dirigida , Obesidad/tratamiento farmacológico , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Metformina/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187898

RESUMEN

An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15-/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Cisplatino/administración & dosificación , Cisplatino/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glucocorticoides/metabolismo , Factor 15 de Diferenciación de Crecimiento/administración & dosificación , Humanos , Lipopolisacáridos , Ratones , Ratas , Tunicamicina/farmacología
7.
Nat Med ; 23(10): 1158-1166, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846099

RESUMEN

Growth differentiation factor 15 (GDF15; also known as MIC-1) is a divergent member of the TGF-ß superfamily and is associated with body-weight regulation in humans and rodents. However, the cognate receptor of GDF15 is unknown. Here we show that GDF15 binds specifically to GDNF family receptor α-like (GFRAL) with high affinity, and that GFRAL requires association with the coreceptor RET to elicit intracellular signaling in response to GDF15 stimulation. We also found that GDF15-mediated reductions in food intake and body weight of mice with obesity were abolished in GFRAL-knockout mice. We further found that GFRAL expression was limited to hindbrain neurons and not present in peripheral tissues, which suggests that GDF15-GFRAL-mediated regulation of food intake is by a central mechanism. Lastly, given that GDF15 did not increase energy expenditure in treated mice with obesity, the anti-obesity actions of the cytokine are likely driven primarily by a reduction in food intake.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/farmacología , Obesidad/metabolismo , Pérdida de Peso/efectos de los fármacos , Animales , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Citometría de Flujo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Resonancia por Plasmón de Superficie , Pérdida de Peso/genética
8.
PLoS One ; 9(6): e100370, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971956

RESUMEN

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP) and the medial (m) portion of the nucleus of the solitary tract (NTS), which did not stain with tyrosine hydroxylase (TH). To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.


Asunto(s)
Depresores del Apetito/farmacología , Área Postrema/efectos de los fármacos , Área Postrema/fisiología , Factor 15 de Diferenciación de Crecimiento/farmacología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Animales , Anorexia/inducido químicamente , Depresores del Apetito/administración & dosificación , Factor 15 de Diferenciación de Crecimiento/administración & dosificación , Infusiones Intraventriculares , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pérdida de Peso/efectos de los fármacos
9.
PLoS One ; 8(2): e55174, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468844

RESUMEN

The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1(-/-)) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1(-/-) mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1(-/-) mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.


Asunto(s)
Apetito/genética , Peso Corporal/genética , Factor 15 de Diferenciación de Crecimiento/genética , Tejido Adiposo/crecimiento & desarrollo , Animales , Apetito/fisiología , Peso Corporal/fisiología , Ingestión de Alimentos , Metabolismo Energético/genética , Femenino , Genotipo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Factores Sexuales , Transducción de Señal , Aumento de Peso/genética
10.
Diabetes ; 62(1): 56-64, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22961088

RESUMEN

Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance.


Asunto(s)
Resistencia a la Insulina , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Animales , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteína 3 Supresora de la Señalización de Citocinas , Triglicéridos/sangre
11.
J Biol Chem ; 285(1): 115-22, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19892703

RESUMEN

The AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that regulates appetite and fuel metabolism. We have generated AMPK beta1(-/-) mice on a C57Bl/6 background that are viable, fertile, survived greater than 2 years, and display no visible brain developmental defects. These mice have a 90% reduction in hepatic AMPK activity due to loss of the catalytic alpha subunits, with modest reductions of activity detected in the hypothalamus and white adipose tissue and no change in skeletal muscle or heart. On a low fat or an obesity-inducing high fat diet, beta1(-/-) mice had reduced food intake, reduced adiposity, and reduced total body mass. Metabolic rate, physical activity, adipose tissue lipolysis, and lipogenesis were similar to wild type littermates. The reduced appetite and body mass of beta1(-/-) mice were associated with protection from high fat diet-induced hyperinsulinemia, hepatic steatosis, and insulin resistance. We demonstrate that the loss of beta1 reduces food intake and protects against the deleterious effects of an obesity-inducing diet.


Asunto(s)
Apetito , Eliminación de Gen , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/prevención & control , Proteínas Quinasas/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Dióxido de Carbono/metabolismo , Oscuridad , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Ayuno/sangre , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/fisiopatología , Especificidad de Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Oxígeno/metabolismo , Proteínas Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Respiración/efectos de los fármacos
12.
Am J Physiol Endocrinol Metab ; 297(1): E57-66, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19435854

RESUMEN

The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimulated glucose uptake, cellular signaling, suppressor of cytokine signaling 3 (SOCS-3) mRNA, and GLUT4 translocation. We found that resistin at a concentration of 30 ng/ml decreased insulin-stimulated glucose uptake by 30-40% in soleus muscle and myotubes, whereas in EDL muscle insulin-stimulated glucose uptake was impaired at a resistin concentration of 100 ng/ml. Impaired insulin-stimulated glucose uptake was not associated with reduced Akt phosphorylation or IRS-1 protein or increased SOCS-3 mRNA expression. To further investigate the site(s) at which resistin impairs glucose uptake we treated myotubes and skeletal muscle with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and found that, although resistin did not impair AMPK activation, it reduced AICAR-stimulated glucose uptake. These data suggested that resistin impairs glucose uptake at a point common to insulin and AMPK signaling pathways, and we thus measured AS160/TBC1D4 Thr(642) phosphorylation and GLUT4 translocation in myotubes. Resistin did not impair TBC1D4 phosphorylation but did reduce both insulin and AICAR-stimulated GLUT4 plasma membrane translocation. We conclude that resistin impairs insulin-stimulated glucose uptake by mechanisms involving reduced plasma membrane GLUT4 translocation but independent of the proximal insulin-signaling cascade, AMPK, and SOCS-3.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Resistina/fisiología , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Multimerización de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Ratas , Resistina/metabolismo
13.
Diabetes ; 58(4): 829-39, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19136654

RESUMEN

OBJECTIVE: Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mice. RESEARCH DESIGN AND METHODS: Mice were injected intraperitoneally with saline or CNTF, and blood glucose was monitored. The effects of CNTF on skeletal muscle glucose uptake and AMPK/Akt signaling were investigated in incubated soleus and extensor digitorum longus (EDL) muscles from muscle-specific AMPKalpha2 kinase-dead, gp130(DeltaSTAT), and lean and obese ob/ob and high-fat-fed mice. The effect of C2-ceramide on glucose uptake and gp130 signaling was also examined. RESULTS: CNTF reduced blood glucose and increased glucose uptake in isolated muscles in a time- and dose-dependent manner with maximal effects after 30 min with 100 ng/ml. CNTF increased Akt-S473 phosphorylation in soleus and EDL; however, AMPK-T172 phosphorylation was only increased in soleus. Incubation of muscles from AMPK kinase dead (KD) and wild-type littermates with the PI3-kinase inhibitor LY-294002 demonstrated that PI3-kinase, but not AMPK, was essential for CNTF-stimulated glucose uptake. CNTF-stimulated glucose uptake and Akt phosphorylation were substantially reduced in obesity (high-fat diet and ob/ob) despite normal induction of gp130/AMPK signaling--effects also observed when treating myotubes with C2-ceramide. CONCLUSIONS: CNTF acutely increases muscle glucose uptake by a mechanism involving the PI3-kinase/Akt pathway that does not require AMPK. CNTF-stimulated glucose uptake is impaired in obesity-induced insulin resistance and by ceramide.


Asunto(s)
Factor Neurotrófico Ciliar/farmacología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Fosfatidilinositol 3-Quinasas/metabolismo , Adenilato Quinasa/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Desoxiglucosa/metabolismo , Glucólisis , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Obesidad/metabolismo
14.
J Physiol ; 586(23): 5819-31, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18845612

RESUMEN

The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained, malonyl-CoA levels were reduced and rates of fatty acid oxidation were comparable between genotypes. During treadmill exercise both KD and WT mice had similar values of respiratory exchange ratio. These studies suggested the presence of an alternative ACC2 kinase(s). Using a phosphoproteomics-based approach we identified 18 Ser/Thr protein kinases whose phosphorylation was increased by greater than 25% in contracted KD relative to WT muscle. Utilizing bioinformatics we predicted that extracellular regulated protein-serine kinase (ERK1/2), inhibitor of nuclear factor (NF)-kappaB protein-serine kinase beta (IKKbeta) and protein kinase D (PKD) may phosphorylate ACC2 at Ser-221 but during in vitro phosphorylation assays only AMPK phosphorylated ACC2. These data demonstrate that AMPK is not essential for the regulation of fatty acid oxidation by AICAR or muscle contraction.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Immunoblotting , Malonil Coenzima A/metabolismo , Ratones , Ratones Endogámicos , Ratones Transgénicos , Actividad Motora/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción , Ácido Palmítico/metabolismo , Fosforilación/efectos de los fármacos , Ribonucleótidos/farmacología , Esterol Esterasa/metabolismo
15.
Front Biosci ; 13: 5589-604, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18508608

RESUMEN

AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may have some importance during more gentle contraction conditions. Factors that regulate alpha1-AMPK during exercise are less clear but it appears, at least to some extent, to rely on an adenine nucleotide-dependent mechanism.


Asunto(s)
Adenilato Quinasa/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Regulación Alostérica , Calcio/fisiología , Metabolismo Energético , Activación Enzimática , Homeostasis , Humanos , Músculo Esquelético/enzimología , Subunidades de Proteína/metabolismo , Transducción de Señal
16.
Mini Rev Med Chem ; 7(5): 519-26, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17504187

RESUMEN

Over the past decade, an epidemic of obesity has developed throughout the Western World. In recent years, significant interest has focused on the role of the AMP-activated protein kinase (AMPK) as a potential therapeutic target for the treatment of obesity and type 2 diabetes and is such the focus of this review. Specifically, the potential role of AMPK in skeletal muscle metabolism as it relates to the insulin sensitizing effects of exercise and the hormones, leptin, adiponectin, ciliary neurotrophic factor and interleukin-6 are discussed. We caution that despite the convincing associations between the activation of AMPK signalling and the restoration of insulin sensitivity, future studies in genetic models of AMPK deficiency or constitutive activation within skeletal muscle are needed to evaluate the quantitative role of AMPK and to validate whether strategies designed to activate skeletal muscle AMPK may be important for regulating whole-body insulin sensitivity.


Asunto(s)
Resistencia a la Insulina , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/enzimología , Obesidad/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Ejercicio Físico , Glucosa/metabolismo , Hormonas/metabolismo , Humanos , Complejos Multienzimáticos/química , Contracción Muscular , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...