Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38812301

RESUMEN

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Asunto(s)
Vacunas Bacterianas , Biología Computacional , Listeria monocytogenes , Listeriosis , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Listeria monocytogenes/inmunología , Vacunas Bacterianas/inmunología , Vacunas de Subunidad/inmunología , Listeriosis/prevención & control , Listeriosis/inmunología , Listeriosis/microbiología , Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Humanos , Epítopos/inmunología , Simulación de Dinámica Molecular , Animales , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/inmunología , Inmunoinformática
2.
Sci Rep ; 14(1): 767, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191579

RESUMEN

More than 95% of patients fall victim to primary amoebic meningoencephalitis (PAM), a fatal disease attacking the central nervous system. Naegleria fowleri, a brain-eating microorganism, is PAM's most well-known pathogenic ameboflagellate. Despite the use of antibiotics, the fatality rate continues to rise as no clinical trials have been conducted against this disease. To address this, we mined the UniProt database for pathogenic proteins and selected assumed epitopes to create an mRNA-based vaccine. We identified thirty B-cell and T-cell epitopes for the vaccine candidate. These epitopes, secretion boosters, subcellular trafficking structures, and linkers were used to construct the vaccine candidate. Through predictive modeling and confirmation via the Ramachandran plot (with a quality factor of 92.22), we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: 0.394, instability index: 38.99, antigenicity: 0.8). The theoretical model of immunological simulations indicated favorable responses from both innate and adaptive immune cells, with memory cells expected to remain active for up to 350 days post-vaccination, while the antigen was eliminated from the body within 24 h. Notably, strong interactions were observed between the vaccine construct and TLR-4 (- 11.9 kcal/mol) and TLR-3 (- 18.2 kcal/mol).


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Naegleria fowleri , Humanos , Vacunas de ARNm , Naegleria fowleri/genética , Infecciones Protozoarias del Sistema Nervioso Central/prevención & control , Epítopos de Linfocito T/genética , ARN Mensajero/genética
3.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141172

RESUMEN

Klebsiella pneumonia is a Gram negative facultative anaerobic bacterium involved in various community-acquired pneumonia, nosocomial and lungs associated infections. Frequent usage of several antibiotics and acquired resistance mechanisms has made this bacterium multi-drug resistance (MDR), complicating the treatment of patients. To avoid the spread of this bacterium, there is an urgent need to develop a vaccine based on immuno-informatics approaches that is more efficient than conventional method of vaccine prediction or development. Initially, the complete proteomic sequence of K. pneumonia was picked over for specific and prospective vaccine targets. From the annotation of the whole proteome, eight immunogenic proteins were selected, and these shortlisted proteins were interpreted for CTL, B-cells, and HTL epitopes prediction, to construct mRNA and multi-epitope vaccines. The Antigenicity, allergenicity and toxicity analysis validate the vaccine's design, and its molecular docking was done with immuno-receptor the TLR-3. The docking interaction showed a stronger binding affinity with a minimum energy of -1153.2 kcal/mol and established 23 hydrogen bonds, 3 salt bridges, 1 disulfide bond, and 340 non-binding contacts. Further validation was done using In-silico cloning which shows the highest CAI score of 0.98 with higher GC contents of 72.25% which represents a vaccine construct with a high value of expression in E. coli. Immune Simulation shows that the antibodies (IgM, IgG1, and IgG2) production exceeded 650,000 in 2 to 3 days but the response was completely neutralized in the 5th day. In conclusion, the study provides the effective, safe and stable vaccine construct against Klebsiella pneumonia, which further needs in vitro and in vivo validations.Communicated by Ramaswamy H. Sarma.

4.
Front Microbiol ; 14: 1157615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152722

RESUMEN

The comparative genomic analysis of Lactiplantibacillus plantarum YW11 (L. plantarum YW11) isolated from Tibetan kefir involves comparison of the complete genome sequences of the isolated strain with other closely related L. plantarum strains. This type of analysis can be used to identify the genetic diversity among strains and to explore the genetic characteristics of the YW11 strain. The genome of L. plantarum YW11 was found to be composed of a circular single chromosome of 4,597,470 bp with a G + C content of 43.2%. A total of 4,278 open reading frames (ORFs) were identified in the genome and the coding density was found to be 87.8%. A comparative genomic analysis was conducted using two other L. plantarum strains, L. plantarum C11 and L. plantarum LMG21703. Genomic comparison revealed that L. plantarum YW11 shared 72.7 and 75.2% of gene content with L. plantarum C11 and L. plantarum LMG21703, respectively. Most of the genes shared between the three L. plantarum strains were involved in carbohydrate metabolism, energy production and conversion, amino acid metabolism, and transcription. In this analysis, 10 previously sequenced entire genomes of the species were compared using an in-silico technique to discover genomic divergence in genes linked with carbohydrate intake and their potential adaptations to distinct human intestinal environments. The subspecies pan-genome was open, which correlated with its extraordinary capacity to colonize several environments. Phylogenetic analysis revealed that the novel genomes were homogenously grouped among subspecies of l Lactiplantibacillus. L. plantarum was resistant to cefoxitin, erythromycin, and metronidazole, inhibited pathogens including Listeria monocytogenes, Clostridium difficile, Vibrio cholera, and others, and had excellent aerotolerance, which is useful for industrial operations. The comparative genomic analysis of L. plantarum YW11 isolated from Tibetan kefir can provide insights into the genetic characteristics of the strain, which can be used to further understand its role in the production of kefir.

5.
Front Microbiol ; 13: 960285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329838

RESUMEN

Serratia marcescens, a Gram-negative bacterium, is one of the known disease-causing pathogens. It is resistant to ampicillin, macrolides, cephalosporins, cefotaxime, and ceftazidime. The only antibiotic that has been proven to be effective against S. marcescens is gentamicin. By causing epigenetic alterations, bacteria can also become resistant to all antibiotics. Many epigenetically related proteins were studied, and four proteins were selected in this regard for epitope evaluation and their subsequent use in the development of a messenger ribonucleic acid (mRNA) vaccine. A series of immune-informatics tools used to build this mRNA vaccine elicited cellular and humoral immunity. Molecular docking between epitopes and alleles of the major histocompatibility complex (MHC) was performed. The vaccine was developed using 37 epitopes, an adjuvant that is a TLR-4 agonist known as resuscitation-promoting factor E (RpfE), subcellular trafficking structures, secretion boosters, and linkers. This proposed architecture was found to cover 99.6% of the population during testing. During testing, it was proven that it was both effective and safe. To confirm our idea, we performed an in silico immunological simulation of vaccination. The codon was also optimized to ensure that the mRNA reached the cytoplasm of a human host and underwent efficient translation. TLR-4 and TLR-3 were also docked against the secondary and tertiary structures of the vaccine peptide. Furthermore, the vaccine's stability was confirmed by molecular dynamics simulation. In summary, this vaccine construct can be a potential candidate against S. marcescens and is suitable for in vitro analyses to validate its effectiveness.

7.
Vaccines (Basel) ; 10(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36298597

RESUMEN

The family members of Arenaviridae include members of the genus Machupo virus, which have bi-segmented negative sense RNA inside the envelope and can be transferred to humans through rodent carriers. Machupo virus, a member of the mammarenavirus genus, causes Bolivian hemorrhage fever, its viral nucleocapsid protein being a significant virulence factor. Currently, no treatment is available for Bolivian hemorrhage fever and work to develop a protective as well as post-diagnosis treatment is underway. Adding to these efforts, this study employed a reverse-vaccinology approach to design a vaccine with B and T-cell epitopes of the viral nucleocapsid protein of the Machupo virus. Five B-cell specific, eight MHC-I restricted, and 14 MHC-II restricted epitopes were finalized for the construct based on an antigenicity score of >0.5 and non-allergenicity as a key characteristic. The poly-histidine tag was used to construct an immunogenic and stable vaccine construct and 50S ribosomal 46 protein L7/L12 adjuvant with linkers (EAAAK, GPGPG, and AYY). It covers 99.99% of the world's population, making it highly efficient. The physicochemical properties like the aliphatic index (118.31) and the GRAVY index (0.302) showed that the vaccine is easily soluble. The overall Ramachandran score of the construct was 90.7%, and the instability index was 35.13, endorsing a stable structure. The immune simulations demonstrated a long-lasting antibody response even after the excretion of the antigen from the body in the first 5 days of injection. The IgM + IgG titers were predicted to rise to 6000 10 days post-injection and were illustrated to be stable (around 3000) after a month, elucidating that the vaccine would be effective and provide enduring protection. Lastly, the molecular interaction between the construct and the IKBKE receptor was significant and a higher eigenfactor value in MD simulations confirmed the stable molecular interaction between the receptor and the vaccine, validating our construct.

8.
Microorganisms ; 10(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014038

RESUMEN

Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.

9.
Mini Rev Med Chem ; 22(20): 2608-2623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422211

RESUMEN

Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes, but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases, along with the mode of action and treatment approaches, has been discussed.


Asunto(s)
Proteínas Bacterianas , Vacunas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis , Endotoxinas , Exotoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...