Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NanoImpact ; 33: 100497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38316295

RESUMEN

Polyethylene terephthalate (PET) is a commonly used thermoplastic in industry due to its excellent malleability and thermal stability, making it extensively employed in packaging manufacturing. Inadequate disposal of PET packaging in the environment and natural physical-chemical processes leads to the formation of smaller particles known as PET micro and nanoplastics (MNPs). The reduced dimensions enhance particle bioavailability and, subsequently, their reactivity. This study involved chemical degradation of PET using trifluoroacetic acid to assess the impact of exposure to varying concentrations of PET MNPs (0.5, 1, 5, 10, and 20 mg/L) on morphological, functional, behavioral, and biochemical parameters during the early developmental stages of zebrafish (Danio rerio). Characterization of the degraded PET revealed the generated microplastics (MPs) ranged in size from 1305 to 2032 µm, and that the generated nanoplastics (NPs) ranged from 68.06 to 955 nm. These particles were then used for animal exposure. After a six-day exposure period, our findings indicate that PET MNPs can diminish spontaneous tail coiling (STC), elevate the heart rate, accumulate on the chorion surface, and reduce interocular distance. These results suggest that PET exposure induces primary toxic effects on zebrafish embryo-larval stage of development.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Tereftalatos Polietilenos/toxicidad , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad
2.
Neurotoxicol Teratol ; 89: 107058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34942342

RESUMEN

The use of pesticides has continue grown over recent years, leading to several environmental and health concerns, such as the contamination of surface and groundwater resources and associated biota, potentially affecting populations that are not primary targets of these complex chemical mixtures. In this work, we investigate lethal and sublethal effects of acute exposure of methomyl commercial formulation in zebrafish embryo and larvae. Methomyl is a broad-spectrum carbamate insecticide and acaricide that acts primarily in acetylcholinesterase inhibition (AChE). Methomyl formulation 96 h-LC50 was determined through the Fish Embryo Acute Toxicity Test (FET) and resulted in 1.2 g/L ± 0.04. Sublethal 6-day exposure was performed in six methomyl formulation concentrations (0.5; 1.0; 2.2; 4.8; 10.6; 23.3 mg/L) to evaluate developmental, physiological, morphological, behavioral, biochemical, and molecular endpoints of zebrafish early-development. Methomyl affected embryo hatching and larva morphology and behavior, especially in higher concentrations; resulting in smaller body and eyes size, failure in swimming bladder inflation, hypolocomotor activity, and concentration-dependent reduction of AChE activity; demonstrating methomyl strong acute toxicity and neurotoxic effect.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Acetilcolinesterasa/farmacología , Animales , Embrión no Mamífero , Larva , Metomil , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...