Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Insects ; 14(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623378

RESUMEN

Apart from its economic value, industrial hemp (Cannabis sativa L.) is a prolific pollen producer, serving as a food source for bees. However, little is known regarding the extent to which varietal differences in hemp pollen chemistry influences bee preference. Here, we report the chemical profile of pollen from four hemp varieties (Canda, CFX-2, Henola, and Joey) and bee abundance and diversity, using direct visual counts and pan traps. The number and type of bees on each variety was recorded and the chemical composition (proximate analysis and mineral, amino, and fatty acid profiles) of pollen from each hemp variety was determined. During the entire sampling period, three bee types (bumble bees, honey bees, and sweat bees) were recorded, with a combined total of 1826. Among these, sweat bees and bumble bees were the most prevalent and were highest on the Joey variety. The four varieties expressed protein content ranging from 6.05% to 6.89% and the highest in Henola. Seventeen amino acids were expressed in all varieties, with leucine recording the highest content ranging from 4.00 mg/g in Canda to 4.54 mg/g in Henola. In general, Henola expressed high protein, amino acid, and saturated and monosaturated fatty acid contents and recorded significantly fewer bees compared with Joey, which had a low content of these components and a high content of polyunsaturated fatty acids. Our findings suggest that, while industrial hemp offers abundant and accessible pollen that would promote bee health and sustainability of their ecosystem services, the nutritional quality may not be adequate for bee growth and development as an exclusive pollen source.

2.
Front Microbiol ; 14: 1163566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303798

RESUMEN

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

3.
Insects ; 12(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440887

RESUMEN

Pollinators are on the decline and loss of flower resources play a major role. This raises concerns regarding production of insect-pollinated crops and therefore food security. There is urgency to mitigate the decline through creation of farming systems that encourage flower-rich habitats. Cowpea is a crop that produces pollen and nectar attractive to pollinators. Twenty-four cowpea varieties were planted, and the number of pollinators were counted using three sampling methods: pan traps, sticky traps, and direct visual counts. Five pollinator types (honey bees, bumble bees, carpenter bees, wasps, and butterflies and moths), 11 and 16 pollinator families were recorded from direct visual counts, pan and sticky traps, respectively. Pollinator distribution varied significantly among varieties and sampling methods, with highest number on Penny Rile (546.0 ± 38.6) and lowest (214.8 ± 29.2) in Iron and Clay. Sticky traps accounted for 45%, direct visual counts (31%), and pan traps (23%) of pollinators. Pollinators captured by pan traps were more diverse than the other methods. The relationship between number of pollinators and number of flowers was significant (r 2 = 0.3; p = 0.009). Cowpea can increase resources for pollinators and could be used to improve pollinator abundance and diversity in different farming systems.

4.
Insects ; 11(3)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138147

RESUMEN

Amaranth (Amaranthus spp.) is an increasingly high-valued niche vegetable crop among small organic growers in North Carolina, due to its increasing demand among diverse immigrant groups. Production is however hampered by insect pests such as the flea beetle (FB), Disonycha glabrata (Coleoptera: Chrysomelidae), that cause significant yield reduction. Chemical insecticides are generally applied for pest control despite their known risks to health and the environment. Integrated pest management (IPM), which is a cost effective and environmentally friendly approach is still under-exploited in vegetable production by small growers. We studied IPM approaches, suitable for organic production of amaranth by screening nine amaranth varieties for resistance to the flea beetle (FB), D. glabrata, grown with, and without, mulch. D. glabrata population was 60% higher in plots with mulch compared to plots without. The amaranth varieties Molten fire and Green Callaloo recorded the lowest and the highest beetle population commensurate with low, and high leaf damage, respectively. Conversely, leaf yields in the mulched plots were 50% less than recorded in the zero-mulch counterpart, with Green Callaloo variety recording the lowest. These findings will serve as building blocks for a sustainable pest management plan that is appropriate for organic production of Amaranthus spp. in North Carolina.

5.
J Econ Entomol ; 100(2): 315-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17461052

RESUMEN

We assessed the risk associated with introduction of sweet potato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Brentidae), from infested areas to noninfested areas via shipment of sweet potato, Ipomoea batatas (L.), roots within the southern United States. Our study quantifies the effectiveness of risk mitigation procedures of sweet potatoes before shipment in relation to introduction of the weevil. The risk assessment relied on literature and expert information to determine appropriate parameters. Using a computational model, Monte Carlo simulations were conducted to estimate the likelihood of introduction of sweet potato weevil. Risk management options were incorporated and the risk analyses were performed to assess how the risk could be reduced. The study found the risk of introduction of the weevil for both domestic shipment and imports of sweet potatoes into new areas within the southern United States to be low. Sensitivity analysis was performed to assess model stability and the impact of parameter changes. Based on the sensitivity analysis, the most critical input was the postharvest mitigation, followed by the number of weevils per ton of sweet potatoes. We concluded that maintaining mitigations with monitoring in conjunction with public education to stop illegal transport of sweet potatoes and alternate hosts would significantly reduce the risk of introduction.


Asunto(s)
Escarabajos/fisiología , Ipomoea batatas , Animales , Simulación por Computador , Control de Insectos , Método de Montecarlo , Medición de Riesgo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA