RESUMEN
Postnatal mammary gland development and differentiation occur during puberty and pregnancy. To explore the role of DNA methylation in these processes, we determined the genome-wide DNA methylation and gene expression profiles of CD24(+)CD61(+)CD29(hi), CD24(+)CD61(+)CD29(lo), and CD24(+)CD61(-)CD29(lo) cell populations that were previously associated with distinct biological properties at different ages and reproductive stages. We found that pregnancy had the most significant effects on CD24(+)CD61(+)CD29(hi) and CD24(+)CD61(+)CD29(lo) cells, inducing distinct epigenetic states that were maintained through life. Integrated analysis of gene expression, DNA methylation, and histone modification profiles revealed cell-type- and reproductive-stage-specific changes. We identified p27 and TGFß signaling as key regulators of CD24(+)CD61(+)CD29(lo) cell proliferation, based on their expression patterns and results from mammary gland explant cultures. Our results suggest that relatively minor changes in DNA methylation occur during luminal differentiation compared with the effects of pregnancy on CD24(+)CD61(+)CD29(hi) and CD24(+)CD61(+)CD29(lo) cells.
Asunto(s)
Metilación de ADN , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , Factores de Edad , Animales , Antígenos de Superficie/metabolismo , Diferenciación Celular/genética , Análisis por Conglomerados , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Elementos de Facilitación Genéticos , Activación Enzimática , Epigénesis Genética , Células Epiteliales/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histonas/metabolismo , Inmunofenotipificación , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Fenotipo , Embarazo , Regiones Promotoras Genéticas , Maduración Sexual/genética , Transducción de SeñalRESUMEN
RNA interference (RNAi) is a powerful approach to phenocopy mutations in many organisms. Gold standard conventional knock-out mouse technology is labor- and time-intensive; however, off-target effects may confound transgenic RNAi approaches. Here, we describe a rapid method for conditional and reversible gene silencing in RNAi transgenic mouse models and embryonic stem (ES) cells. RUSH and CRUSH RNAi vectors were designed for reversible or conditional knockdown, respectively, demonstrated using targeted replacement in an engineered ROSA26(lacZ) ES cell line and wildtype V6.5 ES cells. RUSH was validated by reversible knockdown of Dnmt1 in vitro. Conditional mouse model production using CRUSH was expedited by deriving ES cell lines from Cre transgenic mouse strains (nestin, cTnnT, and Isl1) and generating all-ES G0 transgenic founders by tetraploid complementation. A control CRUSH(GFP) RNAi mouse strain showed quantitative knockdown of GFP fluorescence as observed in compound CRUSH(GFP) , Ds-Red Cre-reporter transgenic mice, and confirmed by Western blotting. The capability to turn RUSH and CRUSH alleles off or on using Cre recombinase enables this method to rapidly address questions of tissue-specificity and cell autonomy of gene function in development.
Asunto(s)
Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Ratones Transgénicos/genética , Interferencia de ARN , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Modelos Animales , Reproducibilidad de los ResultadosRESUMEN
Malignant gliomas, including glioblastoma multiforme, constitute the most common and aggressive primary brain tumors in adults. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays an essential role in glioblastoma pathogenesis downstream of the major oncogenic protein epidermal growth factor receptor variant III (EGFRvIII). However, the critical gene targets of STAT3 that mediate EGFRvIII-induced glial transformation have remained unknown. Here, we identify inducible nitric oxide synthase (iNOS) as a novel target gene of STAT3 in EGFRvIII-expressing mouse astrocytes. Endogenous STAT3 occupies the endogenous iNOS promoter and stimulates iNOS transcription in EGFRvIII-expressing astrocytes. STAT3 does not appear to control iNOS transcription in astrocytes deficient in the major glioblastoma tumor suppressor protein phosphatase and tensin homolog (PTEN), suggesting that STAT3 regulates iNOS transcription specifically in EGFRvIII-expressing astrocytes. Importantly, inhibition of iNOS by distinct approaches, including knockdown by RNA interference, reduces cell population growth and invasiveness of EGFRvIII-expressing astrocytes. In addition, upon iNOS knockdown or administration of a small-molecule inhibitor of iNOS, EGFRvIII-expressing astrocytes form smaller tumors in vivo. These findings suggest that inhibition of iNOS may have potential therapeutic value for EGFRvIII-activated brain tumors.
Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/patología , Receptores ErbB/fisiología , Neuroglía/fisiología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/fisiología , Factor de Transcripción STAT3/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Sitios de Unión , Transformación Celular Neoplásica/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Inhibidores Enzimáticos/farmacología , Glioblastoma/genética , Glioblastoma/patología , Inmunohistoquímica , Lentivirus/genética , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Transcripción GenéticaRESUMEN
The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells.
Asunto(s)
Cadherinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia/patología , Cadherinas/genética , Comunicación Celular , Técnicas de Cultivo de Célula , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Código de Histonas , Histonas/metabolismo , Humanos , MicroARNs/metabolismo , Regiones Promotoras Genéticas , Microambiente TumoralRESUMEN
TGFbeta functions as a tumor suppressor in some contexts and a tumor promoter in others. In a recent issue of Cancer Cell, Bruna et al. (2007) shed light on an epigenetic mechanism that underlies this schizophrenic behavior in malignant glioma. Their findings highlight a stem cell/cancer link...and a potential blind spot in large-scale cancer genome sequencing projects.
Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Proteínas Smad/genética , Factor de Crecimiento Transformador beta/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Epigénesis Genética/genética , Glioma/metabolismo , Glioma/fisiopatología , Humanos , Proteínas Smad/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Aberrant gene silencing accompanied by DNA methylation is associated with neoplastic progression in many tumors that also show global loss of DNA methylation. Using conditional inactivation of de novo methyltransferase Dnmt3b in Apc(Min/+) mice, we demonstrate that the loss of Dnmt3b has no impact on microadenoma formation, which is considered the earliest stage of intestinal tumor formation. Nevertheless, we observed a significant decrease in the formation of macroscopic colonic adenomas. Interestingly, many large adenomas showed regions with Dnmt3b inactivation, indicating that Dnmt3b is required for initial outgrowth of macroscopic adenomas but is not required for their maintenance. These results support a role for Dnmt3b in the transition stage between microadenoma formation and macroscopic colonic tumor growth and further suggest that Dnmt3b, and by extension de novo methylation, is not required for maintaining tumor growth after this transition stage has occurred.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Intestinales/genética , Adenoma/genética , Adenoma/patología , Alelos , Animales , Western Blotting , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN de Neoplasias/metabolismo , Inmunohistoquímica , Neoplasias Intestinales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , ADN Metiltransferasa 3BRESUMEN
Loss of imprinting (LOI), commonly observed in human tumors, refers to loss of monoallelic gene regulation normally conferred by parent-of-origin-specific DNA methylation. To test the function of LOI in tumorigenesis, we developed a model by using transient demethylation to generate imprint-free mouse embryonic stem cells (IF-ES cells). Embryonic fibroblasts derived from IF-ES cells (IF-MEFs) display TGFbeta resistance and reduced p19 and p53 expression and form tumors in SCID mice. IF-MEFs exhibit spontaneous immortalization and cooperate with H-Ras in cellular transformation. Chimeric animals derived from IF-ES cells develop multiple tumors arising from the injected IF-ES cells within 12 months. These data demonstrate that LOI alone can predispose cells to tumorigenesis and identify a pathway through which immortality conferred by LOI lowers the threshold for transformation.
Asunto(s)
Impresión Genómica , Neoplasias Experimentales/patología , Animales , Secuencia de Bases , Línea Celular Transformada , Metilación de ADN , Cartilla de ADN , Mutación de Línea Germinal , Ratones , Neoplasias Experimentales/genética , Reacción en Cadena de la PolimerasaRESUMEN
Genome-wide DNA hypomethylation and concomitant promoter-specific tumor suppressor gene hypermethylation are among the most common molecular alterations in human neoplasia. Consistent with the notion that both promoter hypermethylation and genome-wide hypomethylation are functionally important in tumorigenesis, genetic and/or pharmacologic reduction of DNA methylation levels results in suppression or promotion of tumor incidence, respectively, depending on the tumor cell type. For instance, DNA hypomethylation promotes tumors that rely predominantly on loss of heterozygosity (LOH) or chromosomal instability mechanisms, whereas loss of DNA methylation suppresses tumors that rely on epigenetic silencing. Mutational and epigenetic silencing events in Wnt pathway genes have been identified in human colon tumors. We used Apc(Min/+) mice to investigate the effect of hypomethylation on intestinal and liver tumor formation. Intestinal carcinogenesis in Apc(Min/+) mice occurs in two stages, with the formation of microadenomas leading to the development of macroscopic polyps. Using Dnmt1 hypomorphic alleles to reduce genomic methylation, we observed elevated incidence of microadenomas that were associated with LOH at Apc. In contrast, the incidence and growth of macroscopic intestinal tumors in the same animals was strongly suppressed. In contrast to the overall inhibition of intestinal tumorigenesis in hypomethylated Apc(Min/+) mice, hypomethylation caused development of multifocal liver tumors accompanied by Apc LOH. These findings support the notion of a dual role for DNA hypomethylation in suppressing later stages of intestinal tumorigenesis, but promoting early lesions in the colon and liver through an LOH mechanism.
Asunto(s)
Adenoma/genética , Inestabilidad Cromosómica , Metilación de ADN , Genoma , Neoplasias Intestinales/metabolismo , Neoplasias Hepáticas/metabolismo , Pólipos/genética , Adenoma/metabolismo , Adenoma/patología , Animales , Inestabilidad Cromosómica/genética , Epigénesis Genética/genética , Silenciador del Gen , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pérdida de Heterocigocidad/genética , Ratones , Ratones Mutantes , Pólipos/metabolismo , Pólipos/patologíaRESUMEN
In mammalian heterochromatin, cytosine bases of CpG dinucleotides are symmetrically modified by methylation. Patterns of CpG methylation are maintained by the action of Dnmt1, the mammalian maintenance cytosine methyltransferase enzyme. We genetically manipulated the levels of CpG methylation and found that extensive chromatin alterations occur in pericentric heterochromatin. Homozygous mutations in Dnmt1 cause severe hypomethylation of pericentric heterochromatin and concomitant chromatin reorganization involving the histone variant macroH2A. Demethylation-induced alterations in macroH2A localization occur in both interphase and mitotic embryonic stem (ES) cells. Heterochromatin protein 1 (HP1) marks interphase pericentric heterochromatin (chromocenters). MacroH2A immunostaining in Dnmt1(-/-) cells becomes coincident with chromocenters detected by HP1 content. MacroH2A, but not HP1, is enriched in nuclease-resistant chromatin fractions extracted from Dnmt1(-/-) cells. Normal localization of macroH2A was restored upon reintroduction of a Dnmt1 transgene into Dnmt1(-/-) cells. MacroH2A localization was also affected in T-antigen-transformed fibroblasts subjected to the conditional mutation of Dnmt1. Together, these results suggest that pericentric heterochromatin can be maintained in the absence of CpG methylation, but in a significantly altered configuration.
Asunto(s)
Islas de CpG/fisiología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Eliminación de Gen , Silenciador del Gen/fisiología , Heterocromatina/genética , Interfase/fisiología , Masculino , Ratones , Mutación/fisiología , Células Madre Pluripotentes/metabolismo , Transfección , Transgenes/genéticaRESUMEN
Genome-wide DNA hypomethylation occurs in many human cancers, but whether this epigenetic change is a cause or consequence of tumorigenesis has been unclear. To explore this phenomenon, we generated mice carrying a hypomorphic DNA methyltransferase 1 (Dnmt1) allele, which reduces Dnmt1 expression to 10% of wild-type levels and results in substantial genome-wide hypomethylation in all tissues. The mutant mice were runted at birth, and at 4 to 8 months of age they developed aggressive T cell lymphomas that displayed a high frequency of chromosome 15 trisomy. These results indicate that DNA hypomethylation plays a causal role in tumor formation, possibly by promoting chromosomal instability.
Asunto(s)
Aberraciones Cromosómicas , Cromosomas de los Mamíferos/genética , Metilación de ADN , Linfoma de Células T/genética , Alelos , Animales , Peso al Nacer , Transformación Celular Neoplásica , Cromosomas de los Mamíferos/fisiología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiología , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Genes myc , Heterocigoto , Pérdida de Heterocigocidad , Linfoma de Células T/patología , Ratones , Ratones Transgénicos , Virus de la Leucemia Murina de Moloney/genética , Virus de la Leucemia Murina de Moloney/fisiología , Trisomía , Activación ViralRESUMEN
The laboratory mouse is one of the most powerful tools for both gene discovery and validation in cancer genetics. Recent technological advances in engineering the mouse genome with chromosome translocations, latent alleles, and tissue-specific and temporally regulated mutations have provided more exacting models of human disease. The marriage of mouse tumor models with rapidly evolving methods to profile genetic and epigenetic alterations in tumors, and to finely map genetic modifier loci, will continue to provide insight into the key pathways leading to tumorigenesis. These discoveries hold great promise for identifying relevant drug targets for treating human cancer.
Asunto(s)
Modelos Animales de Enfermedad , Neoplasias/genética , Animales , Marcación de Gen , Genes Supresores de Tumor , Genoma , Ratones , Ratones Transgénicos , Modelos Genéticos , OncogenesRESUMEN
We have devised a general strategy for producing female mice from 39,X0 embryonic stem (ES) cells derived from male cell lines carrying a targeted mutation of interest. We show that the Y chromosome is lost in 2% of subclones from 40,XY ES cell lines, making the identification of targeted 39,X0 subclones a routine procedure. After gene targeting, male and female mice carrying the mutation can be generated by tetraploid embryo complementation from the 40,XY ES cell line and its 39,X0 derivatives. A single intercross then produces homozygous mutant offspring. Because this strategy avoids outcrossing and therefore segregation of mutant alleles introduced into the ES cells, the time and expense required for production of experimental mutant animals from a targeted ES cell clone are substantially reduced. Our data also indicate that ES cells have inherently unstable karyotypes, but this instability does not interfere with production of adult ES cell tetraploid mice.