Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622904

RESUMEN

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Proteínas RGS/inmunología , Animales , Diferenciación Celular , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Ratones
2.
Gut ; 71(12): 2502-2517, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35477539

RESUMEN

OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Humanos , Biomarcadores de Tumor/genética , Células del Estroma/patología , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/patología , Neoplasias del Colon/patología , Pronóstico
3.
Cancer Cell ; 39(9): 1227-1244.e20, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34297917

RESUMEN

Fibroblasts display extensive transcriptional heterogeneity, yet functional annotation and characterization of their heterocellular relationships remains incomplete. Using mass cytometry, we chart the stromal composition of 18 murine tissues and 5 spontaneous tumor models, with an emphasis on mesenchymal phenotypes. This analysis reveals extensive stromal heterogeneity across tissues and tumors, and identifies coordinated relationships between mesenchymal and immune cell subsets in pancreatic ductal adenocarcinoma. Expression of CD105 demarks two stable and functionally distinct pancreatic fibroblast lineages, which are also identified in murine and human healthy tissues and tumors. Whereas CD105-positive pancreatic fibroblasts are permissive for tumor growth in vivo, CD105-negative fibroblasts are highly tumor suppressive. This restrictive effect is entirely dependent on functional adaptive immunity. Collectively, these results reveal two functionally distinct pancreatic fibroblast lineages and highlight the importance of mesenchymal and immune cell interactions in restricting tumor growth.


Asunto(s)
Fibroblastos Asociados al Cáncer/inmunología , Carcinoma Ductal Pancreático/inmunología , Endoglina/genética , Neoplasias Pancreáticas/inmunología , Análisis de la Célula Individual/métodos , Inmunidad Adaptativa , Animales , Carcinoma Ductal Pancreático/genética , Estudios de Casos y Controles , Línea Celular Tumoral , Plasticidad de la Célula , Endoglina/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA