Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8011): 443-449, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658754

RESUMEN

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Asunto(s)
Antineoplásicos , Descubrimiento de Drogas , Inhibidores Enzimáticos , Inestabilidad de Microsatélites , Neoplasias , Mutaciones Letales Sintéticas , Helicasa del Síndrome de Werner , Animales , Femenino , Humanos , Ratones , Administración Oral , Regulación Alostérica/efectos de los fármacos , Antineoplásicos/efectos adversos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Daño del ADN/efectos de los fármacos , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Dominios Proteicos , Reproducibilidad de los Resultados , Supresión Genética , Mutaciones Letales Sintéticas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Death Differ ; 26(9): 1631-1645, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30442947

RESUMEN

Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Necroptosis/efectos de los fármacos , Fenitoína/farmacología , Animales , Anticonvulsivantes/farmacología , Apoptosis/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células HT29 , Humanos , Inflamación/genética , Inflamación/patología , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Células 3T3 NIH , Necroptosis/genética , Fenitoína/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores de Muerte Celular/antagonistas & inhibidores , Receptores de Muerte Celular/genética , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Sepsis/tratamiento farmacológico , Sepsis/genética
3.
Nat Commun ; 9(1): 3001, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069026

RESUMEN

The NLRP3 inflammasome responds to infection and tissue damage, and rapidly escalates the intensity of inflammation by activating interleukin (IL)-1ß, IL-18 and cell death by pyroptosis. How the NLRP3 inflammasome is negatively regulated is poorly understood. Here we show that NLRP3 inflammasome activation is suppressed by sumoylation. NLRP3 is sumoylated by the SUMO E3-ligase MAPL, and stimulation-dependent NLRP3 desumoylation by the SUMO-specific proteases SENP6 and SENP7 promotes NLRP3 activation. Defective NLRP3 sumoylation, either by NLRP3 mutation of SUMO acceptor lysines or depletion of MAPL, results in enhanced caspase-1 activation and IL-1ß release. Conversely, depletion of SENP7 suppresses NLRP3-dependent ASC oligomerisation, caspase-1 activation and IL-1ß release. These data indicate that sumoylation of NLRP3 restrains inflammasome activation, and identify SUMO proteases as potential drug targets for the treatment of inflammatory diseases.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Lisina/genética , Ratones , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/química , Unión Proteica , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo
4.
Cell Rep ; 23(2): 470-484, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642005

RESUMEN

Tumor necrosis factor (TNF) is an inflammatory cytokine that can signal cell survival or cell death. The mechanisms that switch between these distinct outcomes remain poorly defined. Here, we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2) regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. Although depletion of MIB2 has little effect on NF-κB activation, it sensitizes cells to RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated ubiquitylation, either by mutation of MIB2's E3 activity or RIPK1's ubiquitin-acceptor lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings demonstrate that Mind Bomb E3 ubiquitin ligases can function as additional checkpoint of cytokine-induced cell death, selectively protecting cells from the cytotoxic effects of TNF.


Asunto(s)
Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Multimerización de Proteína/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
5.
Mol Cell ; 66(5): 698-710.e5, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28506461

RESUMEN

TNF is an inflammatory cytokine that upon binding to its receptor, TNFR1, can drive cytokine production, cell survival, or cell death. TNFR1 stimulation causes activation of NF-κB, p38α, and its downstream effector kinase MK2, thereby promoting transcription, mRNA stabilization, and translation of target genes. Here we show that TNF-induced activation of MK2 results in global RIPK1 phosphorylation. MK2 directly phosphorylates RIPK1 at residue S321, which inhibits its ability to bind FADD/caspase-8 and induce RIPK1-kinase-dependent apoptosis and necroptosis. Consistently, a phospho-mimetic S321D RIPK1 mutation limits TNF-induced death. Mechanistically, we find that phosphorylation of S321 inhibits RIPK1 kinase activation. We further show that cytosolic RIPK1 contributes to complex-II-mediated cell death, independent of its recruitment to complex-I, suggesting that complex-II originates from both RIPK1 in complex-I and cytosolic RIPK1. Thus, MK2-mediated phosphorylation of RIPK1 serves as a checkpoint within the TNF signaling pathway that integrates cell survival and cytokine production.


Asunto(s)
Apoptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Caspasa 8/metabolismo , Relación Dosis-Respuesta a Droga , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células HT29 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , FN-kappa B/metabolismo , Necrosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal/efectos de los fármacos , Transfección
6.
Nat Struct Mol Biol ; 17(12): 1461-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076401

RESUMEN

The tumor suppressor protein BRCA2 is a key component of the homologous recombination pathway of DNA repair, acting as the loader of RAD51 recombinase at sites of double-strand breaks. Here we show that BRCA2 associates with telomeres during the S and G2 phases of the cell cycle and facilitates the loading of RAD51 onto telomeres. Conditional deletion of Brca2 and inhibition of Rad51 in mouse embryonic fibroblasts (MEFs), but not inactivation of Brca1, led to shortening of telomeres and accumulation of fragmented telomeric signals--a hallmark of telomere fragility that is associated with replication defects. These findings suggest that BRCA2-mediated homologous recombination reactions contribute to the maintenance of telomere length by facilitating telomere replication and imply that BRCA2 has an essential role in maintaining telomere integrity during unchallenged cell proliferation. Mouse mammary tumors that lacked Brca2 accumulated telomere dysfunction-induced foci. Human breast tumors in which BRCA2 was mutated had shorter telomeres than those in which BRCA1 was mutated, suggesting that the genomic instability in BRCA2-deficient tumors was due in part to telomere dysfunction.


Asunto(s)
Proteína BRCA2/fisiología , Recombinasa Rad51/metabolismo , Telómero/metabolismo , Animales , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Reparación del ADN , Fase G2 , Eliminación de Gen , Inestabilidad Genómica , Ratones , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/genética , Fase S , Telómero/química
8.
J Cell Biol ; 181(6): 885-92, 2008 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-18541703

RESUMEN

Centromeres are special structures of eukaryotic chromosomes that hold sister chromatid together and ensure proper chromosome segregation during cell division. Centromeres consist of repeated sequences, which have hindered the study of centromere mitotic recombination and its consequences for centromeric function. We use a chromosome orientation fluorescence in situ hybridization technique to visualize and quantify recombination events at mouse centromeres. We show that centromere mitotic recombination occurs in normal cells to a higher frequency than telomere recombination and to a much higher frequency than chromosome-arm recombination. Furthermore, we show that centromere mitotic recombination is increased in cells lacking the Dnmt3a and Dnmt3b DNA methyltransferases, suggesting that the epigenetic state of centromeric heterochromatin controls recombination events at these regions. Increased centromere recombination in Dnmt3a,3b-deficient cells is accompanied by changes in the length of centromere repeats, suggesting that prevention of illicit centromere recombination is important to maintain centromere integrity in the mouse.


Asunto(s)
Centrómero/genética , Mitosis/genética , Recombinación Genética/genética , Animales , Cromosomas de los Mamíferos/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , ADN Satélite/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Genotipo , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Repeticiones de Minisatélite , Intercambio de Cromátides Hermanas , Telómero/metabolismo
9.
Nat Struct Mol Biol ; 15(3): 268-79, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18311151

RESUMEN

Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , MicroARNs/metabolismo , Recombinación Genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Telómero/genética , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Endorribonucleasas/metabolismo , Histonas/metabolismo , Ratones , Modelos Biológicos , Ribonucleasa III , Telomerasa/metabolismo , ADN Metiltransferasa 3B
10.
J Cell Biol ; 178(6): 925-36, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17846168

RESUMEN

Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.


Asunto(s)
Metilación de ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Recombinación Genética , Telómero/metabolismo , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Estructuras Embrionarias/citología , Epigénesis Genética , Fibroblastos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Técnicas In Vitro , Metilación , Ratones , Telómero/genética
11.
J Cell Biol ; 178(7): 1101-8, 2007 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-17893239

RESUMEN

In response to DNA damage, chromatin undergoes a global decondensation process that has been proposed to facilitate genome surveillance. However, the impact that chromatin compaction has on the DNA damage response (DDR) has not directly been tested and thus remains speculative. We apply two independent approaches (one based on murine embryonic stem cells with reduced amounts of the linker histone H1 and the second making use of histone deacetylase inhibitors) to show that the strength of the DDR is amplified in the context of "open" chromatin. H1-depleted cells are hyperresistant to DNA damage and present hypersensitive checkpoints, phenotypes that we show are explained by an increase in the amount of signaling generated at each DNA break. Furthermore, the decrease in H1 leads to a general increase in telomere length, an as of yet unrecognized role for H1 in the regulation of chromosome structure. We propose that slight differences in the epigenetic configuration might account for the cell-to-cell variation in the strength of the DDR observed when groups of cells are challenged with DNA breaks.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Daño del ADN , Animales , Cromatina/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Ratones , Mutágenos/farmacología , Intercambio de Cromátides Hermanas/efectos de los fármacos , Telómero/metabolismo
12.
Nat Cell Biol ; 8(4): 416-24, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16565708

RESUMEN

Here, we describe a role for mammalian DNA methyltransferases (DNMTs) in telomere length control. Mouse embryonic stem (ES) cells genetically deficient for DNMT1, or both DNMT3a and DNMT3b have dramatically elongated telomeres compared with wild-type controls. Mammalian telomere repeats (TTAGGG) lack the canonical CpG methylation site. However, we demonstrate that mouse subtelomeric regions are heavily methylated, and that this modification is decreased in DNMT-deficient cells. We show that other heterochromatic marks, such as histone 3 Lys 9 (H3K9) and histone 4 Lys 20 (H4K20) trimethylation, remain at both subtelomeric and telomeric regions in these cells. Lack of DNMTs also resulted in increased telomeric recombination as indicated by sister-chromatid exchanges involving telomeric sequences, and by the presence of 'alternative lengthening of telomeres' (ALT)-associated promyelocytic leukaemia (PML) bodies (APBs). This increased telomeric recombination may lead to telomere-length changes, although our results do not exclude a potential involvement of telomerase and telomere-binding proteins in the aberrant telomere elongation observed in DNMT-deficient cells. Together, these results demonstrate a previously unappreciated role for DNA methylation in maintaining telomere integrity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Recombinación Genética , Telómero/genética , Animales , Estructuras del Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Cuerpos Enrollados/genética , Cuerpos Enrollados/metabolismo , Islas de CpG , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Intercambio de Cromátides Hermanas , Células Madre/metabolismo , ADN Metiltransferasa 3B
13.
Cancer Res ; 65(22): 10223-32, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16288010

RESUMEN

Combined cytogenetic and biochemical approaches were used to investigate the contributions of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in the maintenance of genomic stability in nonirradiated and irradiated primary mouse embryo fibroblasts (MEF). We show that telomere dysfunction contributes only marginally to genomic instability associated with DNA-PKcs deficiency in the absence of radiation. Following exposure to ionizing radiation, DNA-PKcs-/- MEFs are radiosensitized mainly as a result of the associated DNA double-strand break (DSB) repair defect. This defect manifests as an increase in the fraction of DSB rejoining with slow kinetics although nearly complete rejoining is achieved within 48 hours. Fifty-four hours after ionizing radiation, DNA-PKcs-/- cells present with a high number of simple and complex chromosome rearrangements as well as with unrepaired chromosome breaks. Overall, induction of chromosome aberrations is 6-fold higher in DNA-PKcs-/- MEFs than in their wild-type counterparts. Spectral karyotyping-fluorescence in situ hybridization technology distinguishes between rearrangements formed by prereplicative and postreplicative DSB rejoining and identifies sister chromatid fusion as a significant source of genomic instability and radiation sensitivity in DNA-PKcs-/- MEFs. Because DNA-PKcs-/- MEFs show a strong G1 checkpoint response after ionizing radiation, we propose that the delayed rejoining of DNA DSBs in DNA-PKcs-/- MEFs prolongs the mean life of broken chromosome ends and increases the probability of incorrect joining. The preponderance of sister chromatid fusion as a product of incorrect joining points to a possible defect in S-phase arrest and emphasizes proximity in these misrepair events.


Asunto(s)
Reparación del ADN/fisiología , Proteína Quinasa Activada por ADN/deficiencia , Fibroblastos/enzimología , Fibroblastos/ultraestructura , Inestabilidad Genómica/fisiología , Animales , Células Cultivadas , Aberraciones Cromosómicas/efectos de la radiación , Daño del ADN , Replicación del ADN , Embrión de Mamíferos , Femenino , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Hibridación Fluorescente in Situ , Ratones , Embarazo , Intercambio de Cromátides Hermanas , Telómero/fisiología
14.
Cancer Res ; 64(20): 7271-8, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15492246

RESUMEN

The role of Ku86 at telomeres has been extensively studied in various organisms; however, a role for Ku86 at human telomeres was unknown because Ku86 deletion is lethal for human cells. Here, we used small interference RNA to decrease Ku86 protein levels in human cells. An approximately 50% reduction in the amount of Ku86 protein was achieved 72 hours after transfection with Ku86-specific small interference RNAs. This decrease in Ku86 levels resulted in a rapid loss of cell viability characterized by increased apoptosis and decreased mitotic index in the cell population. Importantly, Ku86 knockdown was concomitant with a significant loss of telomeric sequences and with increased chromosomal aberrations, including chromatid-type fusions involving telomeric sequences. These findings demonstrate a role for Ku86 in regulating telomere length and telomere capping in human cells, which, in turn, could impact on cancer and aging.


Asunto(s)
Antígenos Nucleares/fisiología , Proteínas de Unión al ADN/fisiología , Telómero/fisiología , Animales , Antígenos Nucleares/genética , Apoptosis/genética , División Celular/genética , Línea Celular Tumoral , Cromátides/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Autoantígeno Ku , Ratones , ARN Interferente Pequeño/genética , Telomerasa/metabolismo , Telómero/genética
15.
Mol Cell Biol ; 24(4): 1595-607, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749375

RESUMEN

The DNA damage-dependent poly(ADP-ribose) polymerase-2 (PARP-2) is, together with PARP-1, an active player of the base excision repair process, thus defining its key role in genome surveillance and protection. Telomeres are specialized DNA-protein structures that protect chromosome ends from being recognized and processed as DNA strand breaks. In mammals, telomere protection depends on the T(2)AG(3) repeat binding protein TRF2, which has been shown to remodel telomeres into large duplex loops (t-loops). In this work we show that PARP-2 physically binds to TRF2 with high affinity. The association of both proteins requires the N-terminal domain of PARP-2 and the myb domain of TRF2. Both partners colocalize at promyelocytic leukemia bodies in immortalized telomerase-negative cells. In addition, our data show that PARP activity regulates the DNA binding activity of TRF2 via both a covalent heteromodification of the dimerization domain of TRF2 and a noncovalent binding of poly(ADP-ribose) to the myb domain of TRF2. PARP-2(-/-) primary cells show normal telomere length as well as normal telomerase activity compared to wild-type cells but display a spontaneously increased frequency of chromosome and chromatid breaks and of ends lacking detectable T(2)AG(3) repeats. Altogether, these results suggest a functional role of PARP-2 activity in the maintenance of telomere integrity.


Asunto(s)
Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/antagonistas & inhibidores , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Sitios de Unión , Línea Celular , Cromátides/metabolismo , Cromosomas de los Mamíferos/metabolismo , ADN/antagonistas & inhibidores , ADN/metabolismo , Daño del ADN , Fibroblastos , Eliminación de Gen , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Telomerasa/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química
16.
Mol Cell Biol ; 23(16): 5572-80, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897131

RESUMEN

The homologous recombination (HR) DNA repair pathway participates in telomere length maintenance in yeast but its putative role at mammalian telomeres is unknown. Mammalian Rad54 is part of the HR machinery, and Rad54-deficient mice show a reduced HR capability. Here, we show that Rad54-deficient mice also show significantly shorter telomeres than wild-type controls, indicating that Rad54 activity plays an essential role in telomere length maintenance in mammals. Rad54 deficiency also resulted in an increased frequency of end-to-end chromosome fusions involving telomeres compared to the controls, suggesting a putative role of Rad54 in telomere capping. Finally, the study of mice doubly deficient for Rad54 and DNA-PKcs showed that telomere fusions due to DNA-PKcs deficiency were not rescued in the absence of Rad54, suggesting that they are not mediated by Rad54 activity.


Asunto(s)
Reparación del ADN , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/genética , Animales , Células Cultivadas , Aberraciones Cromosómicas , ADN Helicasas , Enzimas Reparadoras del ADN , Genotipo , Heterocigoto , Hibridación Fluorescente in Situ , Ratones , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA