Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Circ Res ; 134(2): 143-161, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38156445

RESUMEN

BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Anciano , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/metabolismo , Plaquetas/metabolismo , Hemorragia/metabolismo , Mitocondrias/metabolismo , Fosfatidilserinas/metabolismo
3.
Blood Adv ; 7(20): 6290-6302, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37624769

RESUMEN

Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.


Asunto(s)
Plaquetas , Activación Plaquetaria , Plaquetas/metabolismo , Retracción del Coagulo , Fosforilación Oxidativa , Mitocondrias/metabolismo
4.
Blood ; 140(23): 2477-2489, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35930749

RESUMEN

The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbß3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.


Asunto(s)
ARN Mensajero , Humanos , Animales , Ratones
6.
Blood Cells Mol Dis ; 92: 102624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775219

RESUMEN

The purpose of this research was to assess the effects of a microRNA (miRNA) cluster on platelet production. Human chromosome 19q13.41 harbors an evolutionarily conserved cluster of three miRNA genes (MIR99B, MIRLET7E, MIR125A) within 727 base-pairs. We now report that levels of miR-99b-5p, miR-let7e-5p and miR-125a-5p are strongly correlated in human platelets, and all are positively associated with platelet count, but not white blood count or hemoglobin level. Although the cluster regulates hematopoietic stem cell proliferation, the function of this genomic locus in megakaryocyte (MK) differentiation and platelet production is unknown. Furthermore, studies of individual miRNAs do not represent broader effects in the context of a cluster. To address this possibility, MK/platelet lineage-specific Mir-99b/let7e/125a knockout mice were generated. Compared to wild type littermates, cluster knockout mice had significantly lower platelet counts and reduced MK proplatelet formation, but no differences in MK numbers, ploidy, maturation or ultra-structural morphology, and no differences in platelet function. Compared to wild type littermates, knockout mice showed similar survival after pulmonary embolism. The major conclusions are that the effect of the Mir-99b/let7e/125a cluster is confined to a late stage of thrombopoiesis, and this effect on platelet number is uncoupled from platelet function.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , MicroARNs/genética , Animales , Plaquetas/citología , Eliminación de Gen , Humanos , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Trombocitopenia/genética , Trombopoyesis
7.
Blood Adv ; 5(9): 2362-2374, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33944898

RESUMEN

Human anucleate platelets cannot be directly modified using traditional genetic approaches. Instead, studies of platelet gene function depend on alternative models. Megakaryocytes (the nucleated precursor to platelets) are the nearest cell to platelets in origin, structure, and function. However, achieving consistent genetic modifications in primary megakaryocytes has been challenging, and the functional effects of induced gene deletions on human megakaryocytes for even well-characterized platelet genes (eg, ITGA2B) are unknown. Here we present a rapid and systematic approach to screen genes for platelet functions in CD34+ cell-derived megakaryocytes called CRIMSON (CRISPR-edited megakaryocytes for rapid screening of platelet gene functions). By using CRISPR/Cas9, we achieved efficient nonviral gene editing of a panel of platelet genes in megakaryocytes without compromising megakaryopoiesis. Gene editing induced loss of protein in up to 95% of cells for platelet function genes GP6, RASGRP2, and ITGA2B; for the immune receptor component B2M; and for COMMD7, which was previously associated with cardiovascular disease and platelet function. Gene deletions affected several select responses to platelet agonists in megakaryocytes in a manner largely consistent with those expected for platelets. Deletion of B2M did not significantly affect platelet-like responses, whereas deletion of ITGA2B abolished agonist-induced integrin activation and spreading on fibrinogen without affecting the translocation of P-selectin. Deletion of GP6 abrogated responses to collagen receptor agonists but not thrombin. Deletion of RASGRP2 impaired functional responses to adenosine 5'-diphosphate (ADP), thrombin, and collagen receptor agonists. Deletion of COMMD7 significantly impaired multiple responses to platelet agonists. Together, our data recommend CRIMSON for rapid evaluation of platelet gene phenotype associations.


Asunto(s)
Plaquetas , Megacariocitos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Intercambio de Guanina Nucleótido , Humanos , Fenotipo , Trombopoyesis
8.
Blood ; 138(5): 401-416, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33895821

RESUMEN

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased and have been associated with adverse clinical events, including increased platelet-T-cell interactions. Sepsis is associated with reduced CD8+ T-cell numbers and functional responses, but whether platelets regulate CD8+ T-cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen-specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (eg, interferon-γ and lipopolysaccharide). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage-specific MHC-I-deficient mouse strain (B2Mf/f-Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T-cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo, during sepsis. Loss of platelet MHC-I reduces sepsis-associated mortality in mice in an antigen-specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen-specific CD8+ T cells, and regulate CD8+ T-cell numbers, functional responses, and outcomes during sepsis.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Tolerancia Inmunológica , Sepsis/inmunología , Adulto , Animales , Proliferación Celular , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Estudios Prospectivos , Sepsis/genética
9.
J Leukoc Biol ; 109(5): 915-930, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33070381

RESUMEN

Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.


Asunto(s)
Plaquetas/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Adenosina Difosfato/farmacología , Biomarcadores/metabolismo , Plaquetas/efectos de los fármacos , AMP Cíclico/metabolismo , Trampas Extracelulares/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Modelos Biológicos , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Orosomucoide/agonistas , Péptidos/metabolismo , Factor de Activación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Polisacáridos/metabolismo , Isoformas de Proteínas/metabolismo
10.
Free Radic Biol Med ; 143: 275-287, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31442556

RESUMEN

Platelet-activating factor (PAF) is a potent inflammatory agonist. In Swiss albino mice, intraperitoneal injection of PAF causes sudden death with oxidative stress and disseminated intravascular coagulation (DIC), characterized by prolonged prothrombin time, thrombocytopenia, reduced fibrinogen content, and increased levels of fibrinogen degradation products. However, the underlying mechanism(s) is unknown. The PAF-R antagonist WEB-2086 protected mice against PAF-induced death by reducing DIC and oxidative stress. Accordingly, general antioxidants such as ascorbic acid, α-tocopherol, gallic acid, and N-acetylcysteine partially protected mice from PAF-induced death. N-acetylcysteine, a clinically used antioxidant, prevented death in 67% of mice, ameliorated DIC characteristics and histological alterations in the liver, and reduced oxidative stress. WEB-2086 suppressed H2O2-mediated oxidative stress in isolated mouse peritoneal macrophages, suggesting that PAF signaling may be a downstream effector of reactive oxygen species generation. PAF stimulated all three (ERK, JNK, and p38) of the MAP-kinases, which were also inhibited by N-acetylcysteine. Furthermore, a JNK inhibitor (SP600125) and ERK inhibitor (SCH772984) partially protected mice against PAF-induced death, whereas a p38 MAP-kinase inhibitor (SB203580) provided complete protection against DIC and death. In human platelets, which have the canonical PAF-R and functional MAP-kinases, JNK and p38 inhibitors abolished PAF-induced platelet aggregation, but the ERK inhibitor was ineffective. Our studies identify p38 MAP-kinase as a critical, but unrecognized component in PAF-induced mortality in mice. These findings suggest an alternative therapeutic strategy to address PAF-mediated pathogenicity, which plays a role in a broad range of inflammatory diseases.


Asunto(s)
Muerte Súbita/prevención & control , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo , Factor de Activación Plaquetaria/toxicidad , Sustancias Protectoras/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Acetilcisteína/farmacología , Animales , Muerte Súbita/etiología , Muerte Súbita/patología , Femenino , Depuradores de Radicales Libres/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
11.
Immunobiology ; 224(5): 672-680, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239174

RESUMEN

Alpha-1-acid glycoprotein (AGP-1) is a major positive acute phase glycoprotein with unknown functions that likely play a role in inflammation. We tested its involvement in a variety of inflammatory responses using human AGP-1 purified to apparent homogeneity and confirmed its identity by immunoblotting and mass spectrometry. AGP-1 alone upregulated MAPK signaling in murine peritoneal macrophages. However, when given in combination with TLR ligands, AGP-1 selectively augmented MAPK activation induced by ligands of TLR-2 (Braun lipoprotein) but not TLR-4 (lipopolysaccharide). In vivo treatment of AGP-1 in a murine model of sepsis with or without TLR-2 or TLR-4 ligands, selectively potentiated TLR-2-mediated mortality, but was without significant effect on TLR-4-mediated mortality. Furthermore, in vitro, AGP-1 selectively potentiated TLR-2 mediated adhesion of human primary immune cell, neutrophils. Hence, our studies highlight a new role for the acute phase protein AGP-1 in sepsis via its interaction with TLR-2 signaling mechanisms to selectively promote responsiveness to one of the two major gram-negative endotoxins, contributing to the complicated pathobiology of sepsis.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Orosomucoide/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Endotoxemia/etiología , Endotoxemia/metabolismo , Endotoxemia/mortalidad , Femenino , Inflamación/etiología , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Lipoproteínas/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Orosomucoide/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
12.
J Lipid Res ; 59(11): 2063-2074, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139761

RESUMEN

Platelet-activating factor (PAF) is a potent inflammatory mediator that exerts its actions via the single PAF receptor (PAF-R). Cells that biosynthesize alkyl-PAF also make abundant amounts of the less potent PAF analogue acyl-PAF, which competes for PAF-R. Both PAF species are degraded by the plasma form of PAF acetylhydrolase (PAF-AH). We examined whether cogenerated acyl-PAF protects alkyl-PAF from systemic degradation by acting as a sacrificial substrate to enhance inflammatory stimulation or as an inhibitor to dampen PAF-R signaling. In ex vivo experiments both PAF species are prothrombotic in isolation, but acyl-PAF reduced the alkyl-PAF-induced stimulation of human platelets that express canonical PAF-R. In Swiss albino mice, alkyl-PAF causes sudden death, but this effect can also be suppressed by simultaneously administering boluses of acyl-PAF. When PAF-AH levels were incrementally elevated, the protective effect of acyl-PAF on alkyl-PAF-induced death was serially decreased. We conclude that, although acyl-PAF in isolation is mildly proinflammatory, in a pathophysiological setting abundant acyl-PAF suppresses the action of alkyl-PAF. These studies provide evidence for a previously unrecognized role for acyl-PAF as an inflammatory set-point modulator that regulates both PAF-R signaling and hydrolysis.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Azepinas/farmacología , Cromatografía Liquida , Femenino , Voluntarios Sanos , Lisofosfatidilcolinas/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípidos/sangre , Fosfolípidos/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Triazoles/farmacología
13.
Sci Rep ; 6: 34666, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698491

RESUMEN

The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1ß mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2-/- mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/toxicidad , Endotoxemia/genética , Proteínas de Escherichia coli/toxicidad , Lipopolisacáridos/toxicidad , Lipoproteínas/toxicidad , Animales , Adhesión Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Endotoxemia/inducido químicamente , Endotoxemia/inmunología , Endotoxemia/mortalidad , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/patología , Peroxidasa/genética , Peroxidasa/inmunología , Factor de Activación Plaquetaria/genética , Factor de Activación Plaquetaria/inmunología , Cultivo Primario de Células , Células RAW 264.7 , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
14.
PLoS One ; 11(4): e0153282, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064683

RESUMEN

Lipopolysaccharide (LPS) signaling through Toll-like receptor-4 (TLR-4) has been implicated in the pathogenesis of many infectious diseases. Some believe that TLR-mediated pathogenicity is due, in part, to the lipid pro-inflammatory mediator platelet-activating factor (PAF), but this has been questioned. To test the direct contribution of PAF in endotoxemia in murine models, we injected PAF intraperitoneally into Swiss albino mice in the presence and absence of LPS. PAF alone (5 µg/mouse) caused death within 15-20 min, but this could be prevented by pretreating mice with PAF-receptor (PAF-R) antagonists or PAF-acetylhydrolase (PAF-AH). A low dose of LPS (5 mg/kg body wt) did not impair PAF-induced death, whereas higher doses (10 or 20 mg/kg body wt) delayed death, probably via LPS cross-tolerance. Cross-tolerance occurred only when PAF was injected simultaneously with LPS or within 30 min of LPS injection. Tolerance does not appear to be due to an abundant soluble mediator. Histologic examination of lungs and liver and measurement of circulating TNF-α and IL-10 levels suggested that the inflammatory response is not diminished during cross-tolerance. Interestingly, aspirin, a non-specific cyclooxygenase (COX) inhibitor, partially blocked PAF-induced sudden death, whereas NS-398, a specific COX-2 inhibitor, completely protected mice from the lethal effects of PAF. Both COX inhibitors (at 20 mg/kg body wt) independently amplified the cross-tolerance exerted by higher dose of LPS, suggesting that COX-derived eicosanoids may be involved in these events. Thus, PAF does not seem to have a protective role in endotoxemia, but its effects are delayed by LPS in a COX-sensitive way. These findings are likely to shed light on basic aspects of the endotoxin cross-tolerance occurring in many disease conditions and may offer new opportunities for clinical intervention.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Muerte Súbita/prevención & control , Endotoxemia/prevención & control , Lipopolisacáridos/farmacología , Factor de Activación Plaquetaria/toxicidad , Prostaglandina-Endoperóxido Sintasas/química , Animales , Citocinas/metabolismo , Muerte Súbita/etiología , Muerte Súbita/patología , Endotoxemia/etiología , Endotoxemia/mortalidad , Endotoxemia/patología , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor de Activación Plaquetaria/administración & dosificación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Sustancias Protectoras/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Tasa de Supervivencia
15.
Inflamm Res ; 65(8): 587-602, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26995266

RESUMEN

INTRODUCTION: Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS: Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS: Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION: Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.


Asunto(s)
Sepsis , Animales , Antibacterianos/uso terapéutico , Proteínas Bacterianas/inmunología , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Sepsis/tratamiento farmacológico , Sepsis/epidemiología , Sepsis/etiología , Sepsis/inmunología
16.
J Lipid Res ; 55(9): 1847-54, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24859738

RESUMEN

Mounting ambiguity persists around the functional role of the plasma form of platelet-activating factor acetylhydrolase (PAF-AH). Because PAF-AH hydrolyzes PAF and related oxidized phospholipids, it is widely accepted as an anti-inflammatory enzyme. On the other hand, its actions can also generate lysophosphatidylcholine (lysoPC), a component of bioactive atherogenic oxidized LDL, thus allowing the enzyme to have proinflammatory capabilities. Presence of a canonical lysoPC receptor has been seriously questioned for a multitude of reasons. Animal models of inflammation show that elevating PAF-AH levels is beneficial and not deleterious and overexpression of PAF receptor (PAF-R) also augments inflammatory responses. Further, many Asian populations have a catalytically inert PAF-AH that appears to be a severity factor in a range of inflammatory disorders. Correlation found with elevated levels of PAF-AH and CVDs has led to the design of a specific PAF-AH inhibitor, darapladib. However, in a recently concluded phase III STABILITY clinical trial, use of darapladib did not yield promising results. Presence of structurally related multiple ligands for PAF-R with varied potency, existence of multi-molecular forms of PAF-AH, broad substrate specificity of the enzyme and continuous PAF production by the so called bi-cycle of PAF makes PAF more enigmatic. This review seeks to address the above concerns.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/fisiología , Animales , Aterosclerosis/enzimología , Aterosclerosis/inmunología , Humanos , Hidrólisis , Mediadores de Inflamación/fisiología , Factor de Activación Plaquetaria/fisiología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA