Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Cell Biol ; 39(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31308131

RESUMEN

There is a lack of pharmacological interventions available for sarcopenia, a progressive age-associated loss of muscle mass, leading to a decline in mobility and quality of life. We found mTORC1 (mammalian target of rapamycin complex 1), a well-established positive modulator of muscle mass, to be surprisingly hyperactivated in sarcopenic muscle. Furthermore, partial inhibition of the mTORC1 pathway counteracted sarcopenia, as determined by observing an increase in muscle mass and fiber type cross-sectional area in select muscle groups, again surprising because mTORC1 signaling has been shown to be required for skeletal muscle mass gains in some models of hypertrophy. Additionally, several genes related to senescence were downregulated and gene expression indicators of neuromuscular junction denervation were diminished using a low dose of a "rapalog" (a pharmacological agent related to rapamycin). Therefore, partial mTORC1 inhibition may delay the progression of sarcopenia by directly and indirectly modulating multiple age-associated pathways, implicating mTORC1 as a therapeutic target to treat sarcopenia.


Asunto(s)
Everolimus/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Sarcopenia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Everolimus/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sarcopenia/metabolismo
2.
Phytomedicine ; 23(1): 87-94, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26850689

RESUMEN

BACKGROUND: Rhodiola crenulata is a Tibetan mountainous plant, commonly used in Eastern alternative medicine. Many phytochemicals possess estrogenic activity, a critical regulator of proliferation in mammary epithelial cells. We have previously characterized anti-cancer properties of R. crenulata in aggressive triple negative breast cancer cells, lacking the expression of estrogen receptor. Currently, it is unknown whether R. crenulata exerts estrogenic effects and as such consumption may be a concern for women with estrogen receptor positive breast cancer that use Rhodiola sp. to relieve mild to moderate depression. PURPOSE: In this study, we wished to determine whether a hydroalcoholic fraction of the R. crenulata root extract exhibits estrogenic activity in estrogen receptor positive (ER+) breast cancer cells in vitro and whether it affects normal mammary epithelial ER target gene expression in vivo. METHODS: ER transcriptional activity was analyzed in MCF7 cells expressing an ERE reporter construct and confirmed via qPCR of endogenous ER target genes. We also monitored cellular proliferation over time. Additionally, to assess stem-like properties in MCF7 cells, we performed a tumorsphere formation assay under anchorage independent conditions. We examined whether R. crenulata treatment reduced ß-catenin levels via Western blotting and measured ß-catenin transcriptional activity by a reporter assay. To examine the effects of R. crenulata on normal mammary epithelial cells, we performed immunohistochemical staining of ER and PR in the mammary glands of mice fed R. crenulata for 12 weeks. RESULTS: We show an initial activation of ER transcriptional activity by dual reporter assay, qPCR and proliferation of MCF7 ER+ cells in response to 24 h of R. crenulata treatment. However, upon longer treatment basal and R. crenulata induced transcriptional activity was suppressed. There was a decrease in cell doubling times and a decrease in tumorsphere formation. In association with these changes, ERα transcript levels were decreased and active ß-catenin levels were reduced in the cells treated for 2 weeks. Finally, we show no change in estrogen targets in normal mammary cells in vivo. CONCLUSION: These data suggest that the R. crenulata extract contains components with estrogenic activity. However, R. crenulata treatment could still be protective in ER+ breast cancer cells, as longer treatment reduced the transcriptional activity of ß-catenin and ER responses leading to reduced proliferation and tumorsphere formation. Furthermore, administration of 20 mg/kg/day R. crenulata to mice did not have an observable effect on mammary epithelial ERα target gene expression in vivo.


Asunto(s)
Neoplasias de la Mama/patología , Estrógenos/farmacología , Extractos Vegetales/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Raíces de Plantas/química , Rhodiola/química , Esferoides Celulares/efectos de los fármacos , Activación Transcripcional , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...