Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713824

RESUMEN

CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.

2.
Nat Commun ; 15(1): 1113, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326330

RESUMEN

Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.


Asunto(s)
Integrasas , Recombinación Genética , Integrasas/genética , Integrasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinasas/metabolismo , ADN/metabolismo
3.
New Phytol ; 241(2): 687-702, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950543

RESUMEN

Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Front Plant Sci ; 14: 1200253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426959

RESUMEN

Industrial chicory (Cichorium intybus var. sativum) and witloof (C. intybus var. foliosum) are crops with an important economic value, mainly cultivated for inulin production and as a leafy vegetable, respectively. Both crops are rich in nutritionally relevant specialized metabolites with beneficial effects for human health. However, their bitter taste, caused by the sesquiterpene lactones (SLs) produced in leaves and taproot, limits wider applications in the food industry. Changing the bitterness would thus create new opportunities with a great economic impact. Known genes encoding enzymes involved in the SL biosynthetic pathway are GERMACRENE A SYNTHASE (GAS), GERMACRENE A OXIDASE (GAO), COSTUNOLIDE SYNTHASE (COS) and KAUNIOLIDE SYNTHASE (KLS). In this study, we integrated genome and transcriptome mining to further unravel SL biosynthesis. We found that C. intybus SL biosynthesis is controlled by the phytohormone methyl jasmonate (MeJA). Gene family annotation and MeJA inducibility enabled the pinpointing of candidate genes related with the SL biosynthetic pathway. We specifically focused on members of subclade CYP71 of the cytochrome P450 family. We verified the biochemical activity of 14 C. intybus CYP71 enzymes transiently produced in Nicotiana benthamiana and identified several functional paralogs for each of the GAO, COS and KLS genes, pointing to redundancy in and robustness of the SL biosynthetic pathway. Gene functionality was further analyzed using CRISPR/Cas9 genome editing in C. intybus. Metabolite profiling of mutant C. intybus lines demonstrated a successful reduction in SL metabolite production. Together, this study increases our insights into the C. intybus SL biosynthetic pathway and paves the way for the engineering of C. intybus bitterness.

5.
New Phytol ; 239(4): 1521-1532, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37306056

RESUMEN

A major advantage of using CRISPR/Cas9 for gene editing is multiplexing, that is, the simultaneous targeting of many genes. However, primary transformants typically contain hetero-allelic mutations or are genetic mosaic, while genetically stable lines that are homozygous are desired for functional analysis. Currently, a dedicated and labor-intensive effort is required to obtain such higher-order mutants through several generations of genetic crosses and genotyping. We describe the design and validation of a rapid and efficient strategy to produce lines of genetically identical plants carrying various combinations of homozygous edits, suitable for replicated analysis of phenotypical differences. This approach was achieved by combining highly multiplex gene editing in Zea mays (maize) with in vivo haploid induction and efficient in vitro generation of doubled haploid plants using embryo rescue doubling. By combining three CRISPR/Cas9 constructs that target in total 36 genes potentially involved in leaf growth, we generated an array of homozygous lines with various combinations of edits within three generations. Several genotypes show a reproducible 10% increase in leaf size, including a septuple mutant combination. We anticipate that our strategy will facilitate the study of gene families via multiplex CRISPR mutagenesis and the identification of allele combinations to improve quantitative crop traits.


Asunto(s)
Edición Génica , Zea mays , Zea mays/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta , Haploidia , Plantas Modificadas Genéticamente
6.
J Phycol ; 59(3): 433-440, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37256696

RESUMEN

Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.


Asunto(s)
Chlorophyta , Algas Marinas , Ulva , Ecosistema , Biología de Sistemas
7.
Genome Biol ; 24(1): 6, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639800

RESUMEN

BACKGROUND: Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS: We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION: Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.


Asunto(s)
Sistemas CRISPR-Cas , Zea mays , Zea mays/genética , Triticum/genética , Edición Génica/métodos , Mutagénesis
8.
Nucleic Acids Res ; 51(7): e37, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36718951

RESUMEN

Multiplex amplicon sequencing is a versatile method to identify genetic variation in natural or mutagenized populations through eco-tilling or multiplex CRISPR screens. Such genotyping screens require reliable and specific primer designs, combined with simultaneous gRNA design for CRISPR screens. Unfortunately, current tools are unable to combine multiplex gRNA and primer design in a high-throughput and easy-to-use manner with high design flexibility. Here, we report the development of a bioinformatics tool called SMAP design to overcome these limitations. We tested SMAP design on several plant and non-plant genomes and obtained designs for more than 80-90% of the target genes, depending on the genome and gene family. We validated the designs with Illumina multiplex amplicon sequencing and Sanger sequencing in Arabidopsis, soybean, and maize. We also used SMAP design to perform eco-tilling by tilling PCR amplicons across nine candidate genes putatively associated with haploid induction in Cichorium intybus. We screened 60 accessions of chicory and witloof and identified thirteen knockout haplotypes and their carriers. SMAP design is an easy-to-use command-line tool that generates highly specific gRNA and/or primer designs for any number of loci for CRISPR or natural variation screens and is compatible with other SMAP modules for seamless downstream analysis.


Asunto(s)
Variación Genética , Reacción en Cadena de la Polimerasa Multiplex , Programas Informáticos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Genoma , Genotipo
9.
Plant Cell ; 35(1): 218-238, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066192

RESUMEN

Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.


Asunto(s)
Edición Génica , Zea mays , Zea mays/genética , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Herencia Multifactorial , Fitomejoramiento , Genoma de Planta/genética
10.
Curr Protoc ; 2(12): e608, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36469612

RESUMEN

CRISPR/Cas is now the standard technique to generate novel plant genotypes. However, optimizing the efficiency of the system continues to be an aspect of research and development. One of the improvements for increasing mutagenesis efficiency in different species is the application of heat stress. However, many experimental setups are limited by the requirement of using dedicated climate chambers to impose heat stress and by difficulties in the phenotyping of soil-grown plants. Here, we describe a simplified heat stress assay for in vitro-grown plants that can be completed in 6 days using commonly available laboratory equipment. We show that three 24-hr heat shocks (3×HS) at 37°C alternated with 24 hr of recovery at 21°C efficiently increases indel rates of LbCas12a and Cas9. We illustrate how visual mutant phenotypes (pds3 and gl1) can assist in quantifying genome editing efficiency, and describe how to quantify genome editing efficiency using genotyping by Sanger sequencing. We also provide a support protocol to efficiently clone a CRISPR expression vector in a single step. Together, our methods allow researchers to increase CRISPR-induced mutations using a low-tech setup in plants. © 2022 Wiley Periodicals LLC. Basic Protocol 1: 3×HS protocol Basic Protocol 2: Genotyping by Sanger sequencing Support Protocol: One-step cloning of a CRISPR expression vector.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Plantas/genética , Mutagénesis , Respuesta al Choque Térmico/genética
11.
ACS Synth Biol ; 11(6): 2214-2220, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35675166

RESUMEN

The assembly of DNA parts is a critical aspect of contemporary biological research. Gibson assembly and Golden Gate cloning are two popular options. Here, we explore the use of single stranded DNA oligos with Gibson assembly to augment Golden Gate cloning workflows in a process called "oligo stitching". Our results show that oligo stitching can efficiently convert Golden Gate parts between different assembly standards and directly assemble incompatible Golden Gate parts without PCR amplification. Building on previous reports, we show that it can also be used to assemble de novo sequences. As a final application, we show that restriction enzyme recognition sites can be removed from plasmids and utilize the same concept to perform saturation mutagenesis. Given oligo stitching's versatility and high efficiency, we expect that it will be a useful addition to the molecular biologist's toolbox.


Asunto(s)
ADN , Biología Sintética , Clonación Molecular , ADN/genética , Vectores Genéticos , Mutagénesis , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Biología Sintética/métodos
12.
Front Plant Sci ; 13: 883847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528934

RESUMEN

Plant transformation is a bottleneck for the application of gene editing in plants. In Zea mays (maize), a breakthrough was made using co-transformation of the morphogenic transcription factors BABY BOOM (BBM) and WUSCHEL (WUS) to induce somatic embryogenesis. Together with adapted tissue culture media, this was shown to increase transformation efficiency significantly. However, use of the method has not been reported widely, despite a clear need for increased transformation capacity in academic settings. Here, we explore use of the method for the public maize inbred B104 that is widely used for transformation by the research community. We find that only modifying tissue culture media already boosts transformation efficiency significantly and can reduce the time in tissue culture by 1 month. On average, production of independent transgenic plants per starting embryo increased from 1 to 4% using BIALAPHOS RESISTANCE (BAR) as a selection marker. In addition, we reconstructed the BBM-WUS morphogenic gene cassette and evaluated its functionality in B104. Expression of the morphogenic genes under tissue- and development stage-specific promoters led to direct somatic embryo formation on the scutellum of zygotic embryos. However, eight out of ten resulting transgenic plants showed pleiotropic developmental defects and were not fertile. This undesirable phenotype was positively correlated with the copy number of the morphogenic gene cassette. Use of constructs in which morphogenic genes are flanked by a developmentally controlled Cre/LoxP recombination system led to reduced T-DNA copy number and fertile T0 plants, while increasing transformation efficiency from 1 to 5% using HIGHLY-RESISTANT ACETOLACTATE SYNTHASE as a selection marker. Addition of a CRISPR/Cas9 module confirmed functionality for gene editing applications, as exemplified by editing the gene VIRESCENT YELLOW-LIKE (VYL) that can act as a visual marker for gene editing in maize. The constructs, methods, and insights produced in this work will be valuable to translate the use of BBM-WUS and other emerging morphogenic regulators (MRs) to other genotypes and crops.

13.
Methods Mol Biol ; 2464: 205-221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35258835

RESUMEN

Fluorescence-activated cell sorting (FACS) allows for the enrichment of specific plant cell populations after protoplasting. In this book chapter, we describe the transformation and protoplasting of an Arabidopsis thaliana cell suspension culture (PSB-D, derived from MM2d) that can be used for the evaluation of CRISPR vectors in a subpopulation of cells. We also describe the protoplasting of Arabidopsis thaliana cells from the roots and stomatal lineage for the evaluation of tissue-specific gene editing. These protocols allow us to rapidly and accurately quantify various CRISPR systems in plant cells.


Asunto(s)
Arabidopsis , Protoplastos , Arabidopsis/genética , Sistemas CRISPR-Cas , Citometría de Flujo/métodos , Mutagénesis , Células Vegetales
14.
Can Med Educ J ; 13(1): 86-89, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35291454

RESUMEN

Otolaryngology involves the treatment of patients with diseases and disorders of the ear, nose, throat (ENT), and related structures of the head and neck. Many medical students in Canada have limited experiences in ENT and a vast majority of these students go on to pursue a career as primary care physicians. Physicians at a primary care facility classified patient's visits as either being "ENT" related or not, to assess the amount of ENT related concerns they typically encounter. The data was collected separately in the summer and winter months to assess any seasonal variability. One in eight patient encounters presented with an ENT related concern. The percentage of ENT related symptom presentation visits in the pediatric population for both data collection periods (29%) was more than three times that of the adult population (9%). The rate of ENT symptom presentation in both adult and pediatric populations was not affected by seasonality. Primary care physicians will encounter new patients presenting with ENT related concerns quite frequently. This is especially true in the pediatric patient population. Increased ENT medical education is both necessary and essential for undergraduate medical students, residents, and primary care physicians.


L'oto-rhino-laryngologie (ORL) concerne les maladies et les troubles de l'oreille, du nez, de la gorge et des structures connexes de la tête et du cou. De nombreux étudiants au Canada n'ont qu'une expérience limitée de cette spécialité alors que la grande majorité d'entre eux poursuivent une carrière de médecin de soins primaires. Les médecins d'un établissement de soins primaires ont classé les visites des patients afin de déterminer le volume de consultations en lien avec l'ORL. Les données ont été recueillies séparément pendant les mois d'été et d'hiver pour évaluer la variabilité saisonnière. D'après les données, une consultation sur huit était liée à la présence de symptômes ORL. Le pourcentage de consultations chez la population pédiatrique pour les deux périodes de collecte de données (29 %) était plus de trois fois supérieur à celui de la population adulte (9 %). La survenance de symptômes ORL n'était pas affectée par la saisonnalité, ni chez l'une ni chez l'autre. Les médecins de soins primaires voient assez souvent de nouveaux patients présentant des problèmes ORL, particulièrement des enfants. Un renforcement de l'enseignement de la médecine ORL est à la fois nécessaire et essentiel pour les étudiants en médecine de premier cycle, les résidents et les médecins de soins primaires.

15.
Front Genome Ed ; 4: 825042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187531

RESUMEN

CRISPR/Cas9 genome editing has been used extensively in a wide variety of plant species. Creation of loss-of-function alleles, promoter variants and mutant collections are a few of the many uses of genome editing. In a typical workflow for sexually reproducing species, plants are generated that contain an integrated CRISPR/Cas9 transgene. After editing of the gene of interest, T-DNA null segregants can be identified in the next generation that contain only the desired edit. However, maintained presence of the CRISPR/Cas9 transgene and continued editing in the subsequent generations offer a range of applications for model plants and crops. In this review, we define transgenerational gene editing (TGE) as the continued editing of CRISPR/Cas9 after a genetic cross. We discuss the concept of TGE, summarize the current main applications, and highlight special cases to illustrate the importance of TGE for plant genome editing research and breeding.

16.
Curr Biol ; 32(3): 518-531.e6, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085499

RESUMEN

The epidermal pavement cell shape in Arabidopsis is driven by chemical and mechanical cues that direct partitioning mechanisms required for the establishment of the lobe- and indentation-defining polar sites. Brassinosteroid (BR) hormones regulate pavement cell morphogenesis, but the underlying mechanism remains unclear. Here, we identified two PLECKSTRIN HOMOLOGY GTPase-ACTIVATING proteins (PHGAPs) as substrates of the GSK3-like kinase BR-INSENSITIVE2 (BIN2). The phgap1phgap2 mutant displayed severe epidermal cell shape phenotypes, and the PHGAPs were markedly enriched in the anticlinal face of the pavement cell indenting regions. BIN2 phosphorylation of PHGAPs was required for their stability and polarization. BIN2 inhibition activated ROP2-GTPase signaling specifically in the lobes because of PHGAP degradation, while the PHGAPs restrained ROP2 activity in the indentations. Hence, we connect BR and ROP2-GTPase signaling pathways via the regulation of PHGAPs and put forward the importance of spatiotemporal control of BR signaling for pavement cell interdigitation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Forma de la Célula , GTP Fosfohidrolasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Fosforilación
17.
Curr Opin Plant Biol ; 65: 102119, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34653951

RESUMEN

Reverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has not only revolutionized targeted genome modification in plants but also enabled new possibilities for inducible and tissue-specific manipulation of gene functions at the DNA and RNA levels. In addition, novel approaches for the direct manipulation of target proteins have been introduced in plant systems. Here, we review the current development in tissue-specific and conditional manipulation approaches at the DNA, RNA, and protein levels.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN , Desarrollo de la Planta/genética , ARN
18.
New Phytol ; 233(1): 329-343, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637542

RESUMEN

Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas/metabolismo , Isoformas de Proteínas/genética
19.
Plant Physiol ; 186(3): 1442-1454, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33905515

RESUMEN

The green seaweed Ulva mutabilis is an ecologically important marine primary producer as well as a promising cash crop cultivated for multiple uses. Despite its importance, several molecular tools are still needed to better understand seaweed biology. Here, we report the development of a flexible and modular molecular cloning toolkit for the green seaweed U. mutabilis based on a Golden Gate cloning system. The toolkit presently contains 125 entry vectors, 26 destination vectors, and 107 functionally validated expression vectors. We demonstrate the importance of endogenous regulatory sequences for transgene expression and characterize three endogenous promoters suitable to drive transgene expression. We describe two vector architectures to express transgenes via two expression cassettes or a bicistronic approach. The majority of selected transformants (50%-80%) consistently give clear visual transgene expression. Furthermore, we made different marker lines for intracellular compartments after evaluating 13 transit peptides and 11 tagged endogenous Ulva genes. Our molecular toolkit enables the study of Ulva gain-of-function lines and paves the way for gene characterization and large-scale functional genomics studies in a green seaweed.


Asunto(s)
Chlorophyta/genética , Clonación Molecular/métodos , Productos Agrícolas/genética , Algas Marinas/genética , Ulva/genética , Océano Atlántico , Genes de Plantas , Portugal
20.
Plant Cell ; 33(4): 794-813, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33823021

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated systems have revolutionized genome engineering by facilitating a wide range of targeted DNA perturbations. These systems have resulted in the development of powerful new screens to test gene functions at the genomic scale. While there is tremendous potential to map and interrogate gene regulatory networks at unprecedented speed and scale using CRISPR screens, their implementation in plants remains in its infancy. Here we discuss the general concepts, tools, and workflows for establishing CRISPR screens in plants and analyze the handful of recent reports describing the use of this strategy to generate mutant knockout collections or to diversify DNA sequences. In addition, we provide insight into how to design CRISPR knockout screens in plants given the current challenges and limitations and examine multiple design options. Finally, we discuss the unique multiplexing capabilities of CRISPR screens to investigate redundant gene functions in highly duplicated plant genomes. Combinatorial mutant screens have the potential to routinely generate higher-order mutant collections and facilitate the characterization of gene networks. By integrating this approach with the numerous genomic profiles that have been generated over the past two decades, the implementation of CRISPR screens offers new opportunities to analyze plant genomes at deeper resolution and will lead to great advances in functional and synthetic biology.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Plantas/genética , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Mutación , Plantas Modificadas Genéticamente , Densidad de Población , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA