Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 7(10): bvad117, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37766843

RESUMEN

Background: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, riluzole has shown antitumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. We previously reported that the acquisition of tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by riluzole. Methods: We tested the ability of riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI. Results: Single-agent riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple prosurvival signaling molecules, including Akt/mTOR, CREB, and Fak/Src family kinases. Riluzole, in combination with either fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of riluzole plus fulvestrant significantly reduced proliferation in ex vivo primary breast tumor explant cultures. Conclusion: Riluzole may offer therapeutic benefits in diverse ER+ breast cancers, including lobular breast cancer.

2.
Clin Cancer Res ; 27(2): 585-597, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33097494

RESUMEN

PURPOSE: Thyroid disease is a frequent comorbidity in women with breast cancer, and many require thyroid hormone replacement therapy (THRT). We postulated that THRT has a deleterious clinical effect mechanistically through hormonal interactions, nuclear receptor cross-talk, and upregulation of high-risk breast cancer genes. EXPERIMENTAL DESIGN: Observational studies of patients with lymph node-negative (LN-) breast cancer (n = 820 and n = 160) were performed to test interactions between THRT and clinical, histologic, outcome, and treatment variables. Differences between the two cohorts include but are not limited to patient numbers, decades of treatment, duration of follow-up/treatment, tumor sizes, incidence, and type and dose/regimen of antihormonal and/or chemotherapeutic agents. In vivo and vitro models, in silico databases, and molecular methods were used to study interactions and define mechanisms underlying THRT effects. RESULTS: THRT significantly and independently reduced disease-free and breast cancer-specific overall survival of only the steroid receptor (SR)-positive (as compared with SR-negative) node-negative patients in both long-term observational studies. Patients with SR+ LN- breast cancer who received THRT and tamoxifen experienced the shortest survival of all treatment groups. A less potent interaction between THRT and aromatase inhibitors was noted in the second patient cohort. Using in vivo and in vitro models, TH administration enhanced estrogen and TH-associated gene expression and proliferation, nuclear colocalization of estrogen receptor and thyroid hormone receptor, and activation of genes used clinically to predict tumor aggression in SR+ breast cancer, including the IGF-IR, WNT, and TGFß pathways. CONCLUSIONS: We show clinically significant adverse interactions between THRT, estrogenic, and oncogenic signaling in patients with SR+ LN- breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Terapia de Reemplazo de Hormonas/métodos , Receptores de Estrógenos/metabolismo , Tamoxifeno/uso terapéutico , Hormonas Tiroideas/uso terapéutico , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
Cancer Res ; 81(3): 732-746, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184106

RESUMEN

Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Fulvestrant/farmacología , Expresión Génica , Humanos , Mutación
4.
Breast Cancer Res ; 22(1): 68, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576280

RESUMEN

BACKGROUND: Breast cancer is a highly heterogeneous disease characterized by multiple histologic and molecular subtypes. While a myriad of breast cancer cell lines have been developed over the past 60 years, estrogen receptor alpha (ER)+ disease and some mutations associated with this subtype remain underrepresented. Here we describe six breast cancer cell lines derived from patient-derived xenografts (PDX) and their general characteristics. METHODS: Established breast cancer PDX were processed into cell suspensions and placed into standard 2D cell culture; six emerged into long-term passageable cell lines. Cell lines were assessed for protein expression of common luminal, basal, and mesenchymal markers, growth assessed in response to estrogens and endocrine therapies, and RNA-seq and oncogenomics testing performed to compare relative transcript levels and identify putative oncogenic drivers. RESULTS: Three cell lines express ER and two are also progesterone receptor (PR) positive; PAM50 subtyping identified one line as luminal A. One of the ER+PR+ lines harbors a D538G mutation in the gene for ER (ESR1), providing a natural model that contains this endocrine-resistant genotype. The third ER+PR-/low cell line has mucinous features, a rare histologic type of breast cancer. The three other lines are ER- and represent two basal-like and a mixed ductal/lobular breast cancer. The cell lines show varied responses to tamoxifen and fulvestrant, and three were demonstrated to regrow tumors in vivo. RNA sequencing confirms all cell lines are human and epithelial. Targeted oncogenomics testing confirmed the noted ESR1 mutation in addition to other mutations (i.e., PIK3CA, BRCA2, CCND1, NF1, TP53, MYC) and amplifications (i.e., FGFR1, FGFR3) frequently found in breast cancers. CONCLUSIONS: These new generation breast cancer cell lines add to the existing repository of breast cancer models, increase the number of ER+ lines, and provide a resource that can be genetically modified for studying several important clinical breast cancer features.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Línea Celular Tumoral , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Técnicas de Cultivo de Célula , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo
5.
Int J Cancer ; 145(7): 1874-1888, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30843188

RESUMEN

Progression to hormone-independent growth leading to endocrine therapy resistance occurs in a high proportion of patients with estrogen receptor alpha (ERα) and progesterone receptors (PR) positive breast cancer. We and others have previously shown that estrogen- and progestin-induced tumor growth requires ERα and PR interaction at their target genes. Here, we show that fibroblast growth factor 2 (FGF2)-induces cell proliferation and tumor growth through hormone-independent ERα and PR activation and their interaction at the MYC enhancer and proximal promoter. MYC inhibitors, antiestrogens or antiprogestins reverted FGF2-induced effects. LC-MS/MS identified 700 canonical proteins recruited to MYC regulatory sequences after FGF2 stimulation, 397 of which required active ERα (ERα-dependent). We identified ERα-dependent proteins regulating transcription that, after FGF2 treatment, were recruited to the enhancer as well as proteins involved in transcription initiation that were recruited to the proximal promoter. Also, among the ERα-dependent and independent proteins detected at both sites, PR isoforms A and B as well as the novel protein product PRBΔ4 were found. PRBΔ4 lacks the hormone-binding domain and was able to induce reporter gene expression from estrogen-regulated elements and to increase cell proliferation when cells were stimulated with FGF2 but not by progestins. Analysis of the Cancer Genome Atlas data set revealed that PRBΔ4 expression is associated with worse overall survival in luminal breast cancer patients. This discovery provides a new mechanism by which growth factor signaling can engage nonclassical hormone receptor isoforms such as PRBΔ4, which interacts with growth-factor activated ERα and PR to stimulate MYC gene expression and hence progression to endocrine resistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Receptores de Progesterona/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Pronóstico , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Breast Cancer Res Treat ; 175(2): 327-337, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30798422

RESUMEN

PURPOSE: Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is predominantly estrogen receptor alpha (ER)-positive (+) and is thus treated with endocrine therapies. Herein, we sought to understand the molecular underpinnings of the 4-hydroxytamoxifen (4OHT) resistance in ILC by assessing the potential role of the epithelial-to-mesenchymal transition transcription factor (EMT-TF) SNAIL (SNAI1). METHODS: Using a series of breast cancer cell lines, we measured the basal, estrogen and 4OHT-induced expression of SNAIL and other EMT-TF family members by quantitative reverse transcription-polymerase chain reaction and immunoblotting. Chromatin immunoprecipitation experiments were performed to assess ER binding to the SNAIL promoter. Cell proliferation, cell cycle and apoptosis were assessed in 2D cultures. 3D growth was assessed in Matrigel and Collagen I cultures. RESULTS: Estrogen and 4OHT induced SNAIL expression, but not that of the other EMT-TF family members SLUG (SNAI2) and SMUC (SNAI3), with the 4OHT effect being specific to the lobular but not the ductal subtype. We observed estrogen and 4OHT-induced ER recruitment to the SNAI1 promoter and high endogenous basal levels of SNAIL and several EMT-TFs in ILC cell lines. While SNAIL knockdown had a minor impact on the 4OHT partial agonism in estrogen-depleted conditions, it led to a surprising increase in cell proliferation in full serum. In complementary experiments, inducible SNAI1 overexpression caused decreased proliferation, associated with a cell cycle arrest in G0/G1. Additionally, apoptosis was observed in BCK4 cells. CONCLUSION: These data suggest a previously unrecognized role for SNAIL in ILC, substantiating a context-dependent behavior for this EMT-TF.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Lobular/tratamiento farmacológico , Invasividad Neoplásica/genética , Factores de Transcripción de la Familia Snail/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Invasividad Neoplásica/patología , Transducción de Señal/efectos de los fármacos , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
7.
Breast Cancer Res Treat ; 173(2): 289-299, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30317423

RESUMEN

PURPOSE: Tumors that secrete large volumes of mucus are chemotherapy resistant, however, mechanisms underlying this resistance are unknown. One protein highly expressed in mucin secreting breast cancers is the secreted mucin, Mucin 2 (MUC2). While MUC2 is expressed in some breast cancers it is absent in normal breast tissue, implicating it in breast cancer. However, the effects of MUC2 on breast cancer are largely unknown. This study examined the role of MUC2 in modulating breast cancer proliferation, response to chemotherapy and metastasis. METHODS: Using patient derived xenografts we developed two novel cell lines, called BCK4 and PT12, which express high levels of MUC2. To modulate MUC2 levels, BCK4 and PT12 cells were engineered to express shRNA targeted to MUC2 (shMUC2, low MUC2) or a non-targeting control (shCONT, high MUC2) and proliferation and apoptosis were measured in vitro and in vivo. BCK4 cells with shCONT or shMUC2 were labeled with GFP-luciferase and examined in an experimental metastasis model; disease burden and site specific dissemination were monitored by intravital imaging and fluorescence guided dissection, respectively. RESULTS: Proliferation decreased in BCK4 and PT12 shMUC2 cells versus control cells both in vitro and in vivo. Chemotherapy induced minimal apoptosis in control cells expressing high MUC2 but increased apoptosis in shMUC2 cells containing low MUC2. An experimental metastasis model showed disease burden decreased when breast cancer cells contained low versus high MUC2. Treatment with Epidermal Growth Factor (EGF) increased MUC2 expression in BCK4 cells; this induction was abolished by the EGF-receptor inhibitor, Erlotinib. CONCLUSIONS: MUC2 plays an important role in mediating proliferation, apoptosis and metastasis of breast cancer cells. MUC2 may be important in guiding treatment and predicting outcomes in breast cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Mucina 2/metabolismo , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Humanos , Ratones , Mucina 2/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Res ; 78(21): 6209-6222, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30228172

RESUMEN

Invasive lobular carcinoma (ILC) is the second most common subtype of breast cancer following invasive ductal carcinoma (IDC) and characterized by the loss of E-cadherin-mediated adherens junctions. Despite displaying unique histologic and clinical features, ILC still remains a chronically understudied disease, with limited knowledge gleaned from available laboratory research models. Here we report a comprehensive 2D and 3D phenotypic characterization of four estrogen receptor-positive human ILC cell lines: MDA-MB-134, SUM44, MDA-MB-330, and BCK4. Compared with the IDC cell lines MCF7, T47D, and MDA-MB-231, ultra-low attachment culture conditions revealed remarkable anchorage independence unique to ILC cells, a feature not evident in soft-agar gels. Three-dimensional Collagen I and Matrigel culture indicated a generally loose morphology for ILC cell lines, which exhibited differing preferences for adhesion to extracellular matrix proteins in 2D. Furthermore, ILC cells were limited in their ability to migrate and invade in wound-scratch and transwell assays, with the exception of haptotaxis to Collagen I. Transcriptional comparison of these cell lines confirmed the decreased cell proliferation and E-cadherin-mediated intercellular junctions in ILC while uncovering the induction of novel pathways related to cyclic nucleotide phosphodiesterase activity, ion channels, drug metabolism, and alternative cell adhesion molecules such as N-cadherin, some of which were differentially regulated in ILC versus IDC tumors. Altogether, these studies provide an invaluable resource for the breast cancer research community and facilitate further functional discoveries toward understanding ILC, identifying novel drug targets, and ultimately improving the outcome of patients with ILC.Significance: These findings provide the breast cancer research community with a comprehensive assessment of human invasive lobular carcinoma (ILC) cell line signaling and behavior in various culture conditions, aiding future endeavors to develop therapies and to ultimately improve survival in patients with ILC. Cancer Res; 78(21); 6209-22. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Lobular/metabolismo , Técnicas de Cultivo de Célula , Uniones Adherentes , Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinoma Lobular/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Invasividad Neoplásica , Fenotipo , Receptores de Estrógenos/metabolismo , Transducción de Señal
9.
JCI Insight ; 3(14)2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30046001

RESUMEN

Obesity increases breast cancer mortality by promoting resistance to therapy. Here, we identified regulatory pathways in estrogen receptor-positive (ER-positive) tumors that were shared between patients with obesity and those with resistance to neoadjuvant aromatase inhibition. Among these was fibroblast growth factor receptor 1 (FGFR1), a known mediator of endocrine therapy resistance. In a preclinical model with patient-derived ER-positive tumors, diet-induced obesity promoted a similar gene expression signature and sustained the growth of FGFR1-overexpressing tumors after estrogen deprivation. Tumor FGFR1 phosphorylation was elevated with obesity and predicted a shorter disease-free and disease-specific survival for patients treated with tamoxifen. In both human and mouse mammary adipose tissue, FGF1 ligand expression was associated with metabolic dysfunction, weight gain, and adipocyte hypertrophy, implicating the impaired response to a positive energy balance in growth factor production within the tumor niche. In conjunction with these studies, we describe a potentially novel graft-competent model that can be used with patient-derived tissue to elucidate factors specific to extrinsic (host) and intrinsic (tumor) tissue that are critical for obesity-associated tumor promotion. Taken together, we demonstrate that obesity and excess energy establish a tumor environment with features of endocrine therapy resistance and identify a role for ligand-dependent FGFR1 signaling in obesity-associated breast cancer progression.


Asunto(s)
Estrógenos/metabolismo , Obesidad/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Estrógenos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Dieta , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mutación con Pérdida de Función , Ratones , Obesidad/complicaciones , Obesidad/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Tamoxifeno/uso terapéutico , Microambiente Tumoral , Aumento de Peso
10.
Horm Cancer ; 9(5): 338-348, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29956066

RESUMEN

Endocrine resistance may develop as a consequence of enhanced growth factor signaling. Fibroblast growth factor 2 (FGF2) consists of a low and several high molecular weight forms (HMW-FGF2). We previously demonstrated that antiprogestin-resistant mammary carcinomas display lower levels of progesterone receptor A isoforms (PRA) than B isoforms (PRB). Our aim was to evaluate the role of FGF2 isoforms in breast cancer progression. We evaluated FGF2 expression, cell proliferation, and pathway activation in models with different PRA/PRB ratios. We performed lentiviral infections of different FGF2 isoforms using the human hormone-responsive T47D-YA cells, engineered to only express PRA, and evaluated tumor growth, metastatic dissemination, and endocrine responsiveness. We assessed FGF2 expression and localization in 81 human breast cancer samples. Antiprogestin-resistant experimental mammary carcinomas with low PRA/PRB ratios and T47D-YB cells, which only express PRB, displayed higher levels of HMW-FGF2 than responsive variants. HMW-FGF2 overexpression in T47D-YA cells induced increased tumor growth, lung metastasis, and antiprogestin resistance compared to control tumors. In human breast carcinomas categorized by their PRA/PRB ratio, we found nuclear FGF2 expression in 55.6% of tumor cells. No differences were found between nuclear FGF2 expression and Ki67 proliferation index, tumor stage, or tumor grade. In low-grade tumor samples, moderate to high nuclear FGF2 levels were associated to carcinomas with low PRA/PRB ratio. In conclusion, we show that HMW-FGF2 isoforms are PRB targets which confer endocrine resistance and are localized in the nuclei of breast cancer samples. Hence, targeting intracellular FGF2 may contribute to overcome tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Peso Molecular
11.
Clin Cancer Res ; 24(20): 5165-5177, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29941485

RESUMEN

Purpose: Insulin-like growth factor 1 (IGF1) signaling regulates breast cancer initiation and progression and associated cancer phenotypes. We previously identified E-cadherin (CDH1) as a repressor of IGF1 signaling and in this study examined how loss of E-cadherin affects IGF1R signaling and response to anti-IGF1R/insulin receptor (InsR) therapies in breast cancer.Experimental Design: Breast cancer cell lines were used to assess how altered E-cadherin levels regulate IGF1R signaling and response to two anti-IGF1R/InsR therapies. In situ proximity ligation assay (PLA) was used to define interaction between IGF1R and E-cadherin. TCGA RNA-seq and RPPA data were used to compare IGF1R/InsR activation in estrogen receptor-positive (ER+) invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) tumors. ER+ ILC cell lines and xenograft tumor explant cultures were used to evaluate efficacy to IGF1R pathway inhibition in combination with endocrine therapy.Results: Diminished functional E-cadherin increased both activation of IGF1R signaling and efficacy to anti-IGF1R/InsR therapies. PLA demonstrated a direct endogenous interaction between IGF1R and E-cadherin at points of cell-cell contact. Increased expression of IGF1 ligand and levels of IGF1R/InsR phosphorylation were observed in E-cadherin-deficient ER+ ILC compared with IDC tumors. IGF1R pathway inhibitors were effective in inhibiting growth in ER+ ILC cell lines and synergized with endocrine therapy and similarly IGF1R/InsR inhibition reduced proliferation in ILC tumor explant culture.Conclusions: We provide evidence that loss of E-cadherin hyperactivates the IGF1R pathway and increases sensitivity to IGF1R/InsR targeted therapy, thus identifying the IGF1R pathway as a potential novel target in E-cadherin-deficient breast cancers. Clin Cancer Res; 24(20); 5165-77. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Cadherinas/metabolismo , Resistencia a Antineoplásicos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Ratones , ARN Interferente Pequeño/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Oncogenesis ; 6(11): 396, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29176653

RESUMEN

Among the molecular subtypes of breast cancer are luminal (A or B) estrogen receptor positive (ER+), HER2+, and triple negative (basal-like). In addition to the molecular subtypes, there are 18 histologic breast cancer subtypes classified on appearance, including invasive lobular breast carcinoma (ILC), which are 8-15% of all breast cancers and are largely ER+ tumors. We used a new model of ER+ ILC, called BCK4. To determine the estrogen regulated genes in our ILC model, we examined BCK4 xenograft tumors from mice supplemented with or without estrogen using gene expression arrays. Approximately 3000 genes were regulated by estrogen in vivo. Hierarchical cluster analyses of the BCK4 derived tumors compared with ER+ and ER- breast cancer cell lines show the estrogen treated BCK4 tumors group with ER- breast cancers most likely due to a high proliferation score, while tumors from cellulose supplemented mice were more related to ER+ breast tumor cells. To elucidate genes regulated in vitro by estrogen in BCK4 cells, we performed expression profiling using Illumina arrays of the BCK4 cell line, treated with or without estrogen in vitro. A set of ~200 overlapping genes were regulated by estrogen in the BCK4 cell line and xenograft tumors, and pathway analysis revealed that the c-Kit pathway might be a target to reduce estrogen-induced proliferation. Subsequent studies found that inhibition of c-Kit activity using imatinib mesylate (Gleevec®) blocked estrogen mediated stimulation of BCK4 tumors and BCK4 cells in vitro as effectively as the anti-estrogen fulvestrant (Faslodex®). Decreased expression of c-Kit using shRNA also decreased baseline and estrogen induced proliferation in vitro and in vivo. These studies are the first to indicate that c-Kit inhibition is an effective approach to target c-Kit+ ILC.

13.
Front Oncol ; 7: 252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29164052

RESUMEN

Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8-12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.

14.
Cancer Res ; 77(18): 4934-4946, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28729413

RESUMEN

Greater than 50% of estrogen receptor (ER)-positive breast cancers coexpress the progesterone receptor (PR), which can directly and globally modify ER action to attenuate tumor growth. However, whether this attenuation is mediated only through PR-ER interaction remains unknown. To address this question, we assessed tumor growth in ER/PR-positive patient-derived xenograft models of breast cancer, where both natural and synthetic progestins were found to antagonize the mitogenic effects of estrogens. Probing the genome-wide mechanisms by which this occurs, we documented that chronic progestin treatment blunted ER-mediated gene expression up to 2-fold at the level of mRNA transcripts. Unexpectedly, <25% of all ER DNA binding events were affected by the same treatment. The PR cistrome displayed a bimodal distribution. In one group, >50% of PR binding sites were co-occupied by ER, with a propensity for both receptors to coordinately gain or lose binding in the presence of progesterone. In the second group, PR but not ER was associated with a large fraction of RNA polymerase III-transcribed tRNA genes, independent of hormone treatment. Notably, we discovered that PR physically associated with the Pol III holoenzyme. Select pre-tRNAs and mature tRNAs with PR and POLR3A colocalized at their promoters were relatively decreased in estrogen + progestin-treated tumors. Our results illuminate how PR may indirectly impede ER action by reducing the bioavailability of translational molecules needed for tumor growth. Cancer Res; 77(18); 4934-46. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Progestinas/farmacología , ARN Polimerasa III/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Adulto , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Estrógenos/farmacología , Femenino , Perfilación de la Expresión Génica , Humanos , Metástasis Linfática , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Breast Cancer Res ; 18(1): 92, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27650553

RESUMEN

BACKGROUND: Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. METHODS: The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. RESULTS: ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. CONCLUSIONS: WNT4 drives a novel signaling pathway in ILC cells, with a critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Carcinoma Lobular/metabolismo , Resistencia a Antineoplásicos , Receptores de Estrógenos/metabolismo , Transducción de Señal , Proteína Wnt4/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Unión Proteica , Transducción de Señal/efectos de los fármacos , Proteína Wnt4/genética
16.
Mol Cancer Res ; 14(11): 1054-1067, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27565181

RESUMEN

Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha-positive (ER+) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared with dihydrotestosterone (DHT). Estradiol-induced AR-binding sites were enriched for estrogen response elements and had significant overlap with ER-binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER+/AR+ breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER+/AR+ patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Finally, in a comparison of ER+/AR+ primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide preclinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single-agent efficacy may be possible in tumors resistant to traditional endocrine therapy, as clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER. IMPLICATIONS: This study suggests that AR plays a previously unrecognized role in supporting E2-mediated ER activity in ER+/AR+ breast cancer cells, and that enzalutamide may be an effective therapeutic in ER+/AR+ breast cancers. Mol Cancer Res; 14(11); 1054-67. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Cromatina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Feniltiohidantoína/análogos & derivados , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/genética , Tamoxifeno/administración & dosificación , Anilidas/farmacología , Benzamidas , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclohexanos/farmacología , Progresión de la Enfermedad , Estradiol , Femenino , Humanos , Células MCF-7 , Nitrilos , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/farmacología , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología
17.
Mol Cancer Ther ; 14(3): 769-78, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25713333

RESUMEN

Triple-negative breast cancer (TNBC) has the lowest 5-year survival rate of invasive breast carcinomas, and currently there are no approved targeted therapies for this aggressive form of the disease. The androgen receptor (AR) is expressed in up to one third of TNBC and we find that all AR(+) TNBC primary tumors tested display nuclear localization of AR, indicative of transcriptionally active receptors. While AR is most abundant in the "luminal AR (LAR)" molecular subtype of TNBC, here, for the first time, we use both the new-generation anti-androgen enzalutamide and AR knockdown to demonstrate that the other non-LAR molecular subtypes of TNBC are critically dependent on AR protein. Indeed, AR inhibition significantly reduces baseline proliferation, anchorage-independent growth, migration, and invasion and increases apoptosis in four TNBC lines (SUM159PT, HCC1806, BT549, and MDA-MB-231), representing three non-LAR TNBC molecular subtypes (mesenchymal-like, mesenchymal stem-like, and basal-like 2). In vivo, enzalutamide significantly decreases viability of SUM159PT and HCC1806 xenografts. Furthermore, mechanistic analysis reveals that AR activation upregulates secretion of the EGFR ligand amphiregulin (AREG), an effect abrogated by enzalutamide in vitro and in vivo. Exogenous AREG partially rescues the effects of AR knockdown on proliferation, migration, and invasion, demonstrating that upregulation of AREG is one mechanism by which AR influences tumorigenicity. Together, our findings indicate that non-LAR subtypes of TNBC are AR dependent and, moreover, that enzalutamide is a promising targeted therapy for multiple molecular subtypes of AR(+) TNBC.


Asunto(s)
Feniltiohidantoína/análogos & derivados , Receptores Androgénicos/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Antagonistas de Andrógenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzamidas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Desnudos , Nitrilos , Feniltiohidantoína/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
BMC Cancer ; 14: 735, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274034

RESUMEN

BACKGROUND: Luminal, estrogen receptor-positive breast cancers represent more than 70% of cases. Despite initial good prognoses one third of Luminal cancers eventually recur locally or at distant sites and exhibit hormone resistance. Here we demonstrate that factors elaborated by malignant stromal cells can induce Luminal tumor cells proliferation and promote angiogenesis and hormone independence. We recently isolated a malignant mouse mammary gland stromal cell line named BJ3Z that increases proliferation and angiogenesis in estrogen-free xenografted Luminal MCF-7 breast cancer cells. METHODS: BJ3Z and Normal mouse mammary Fibroblasts (NMFs) were expression profiled using microarray assays. Messenger RNA levels were confirmed by RT-PCR and by immunohistochemistry (IHC). Breast cancer MCF-7, BT-474, BT-20 and MDA-MB-231cell lines and stromal BJ3Z and NMFs were grown for in vitro assays: breast cancer cell lines were treated with stromal cells conditioned media, for three-dimensional (3D) mono and co-cultures in Matrigel, proliferation was measured by Bromo-deoxyuridine (BrdU) incorporation using IHC. Tubule formation in vitro, a proxy for angiogenesis, was assessed using 3D cultured Human Umbilical cord Vascular Endothelial Cells (HUVEC). RESULTS: We show that under estrogen-free conditions, BJ3Z cells but not NMFs increase proliferation of co-cultured Luminal but not basal-like human breast cancer cells in 2D or as 3D Matrigel colonies. Gene expression profiling, RT-PCR analysis and IHC of colony-derived BJ3Z cells and NMFs shows that Platelet Derived Growth Factor ligands (PDGF-A and -B) are elaborated by BJ3Z cells but not NMFs; while PDGF receptors are present on NMFs but not BJ3Z cells. As a result, in colony co-culture assays, BJ3Z cells but not NMFs increase MCF-7 cell proliferation. This can be mimicked by direct addition of PDGF-BB, and blocked by the PDGF receptor inhibitor Imatinib Mesylate. Both normal and malignant stromal cells enhance angiogenesis in an in vitro model. This effect is also due to PDGF and is suppressed by Imatinib. CONCLUSIONS: We provide evidence that Luminal breast cancer cells can be targeted by the PDGF signaling pathway leading to estrogen-independent proliferation and angiogenesis. We speculate that stroma-directed therapies, including anti-PDGFR agents like Imatinib, may be useful in combination with other therapies for treatment of luminal cancers.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Neovascularización Patológica/metabolismo , Factor de Crecimiento Derivado de Plaquetas/fisiología , Animales , Neoplasias de la Mama/metabolismo , Femenino , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Células MCF-7 , Ratones , Trasplante de Neoplasias , Neovascularización Patológica/patología , Células del Estroma/metabolismo , Transcriptoma , Microambiente Tumoral
19.
Breast Cancer Res ; 16(1): R7, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24451109

RESUMEN

INTRODUCTION: The androgen receptor (AR) is widely expressed in breast cancers and has been proposed as a therapeutic target in estrogen receptor alpha (ER) negative breast cancers that retain AR. However, controversy exists regarding the role of AR, particularly in ER + tumors. Enzalutamide, an AR inhibitor that impairs nuclear localization of AR, was used to elucidate the role of AR in preclinical models of ER positive and negative breast cancer. METHODS: We examined nuclear AR to ER protein ratios in primary breast cancers in relation to response to endocrine therapy. The effects of AR inhibition with enzalutamide were examined in vitro and in preclinical models of ER positive and negative breast cancer that express AR. RESULTS: In a cohort of 192 women with ER + breast cancers, a high ratio of AR:ER (≥2.0) indicated an over four fold increased risk for failure while on tamoxifen (HR = 4.43). The AR:ER ratio had an independent effect on risk for failure above ER % staining alone. AR:ER ratio is also an independent predictor of disease-free survival (HR = 4.04, 95% CI: 1.68, 9.69; p = 0.002) and disease specific survival (HR = 2.75, 95% CI: 1.11, 6.86; p = 0.03). Both enzalutamide and bicalutamide inhibited 5-alpha-dihydrotestosterone (DHT)-mediated proliferation of breast cancer lines in vitro; however, enzalutamide uniquely inhibited estradiol (E2)-mediated proliferation of ER+/AR + breast cancer cells. In MCF7 xenografts (ER+/AR+) enzalutamide inhibited E2-driven tumor growth as effectively as tamoxifen by decreasing proliferation. Enzalutamide also inhibited DHT- driven tumor growth in both ER positive (MCF7) and negative (MDA-MB-453) xenografts, but did so by increasing apoptosis. CONCLUSIONS: AR to ER ratio may influence breast cancer response to traditional endocrine therapy. Enzalutamide elicits different effects on E2-mediated breast cancer cell proliferation than bicalutamide. This preclinical study supports the initiation of clinical studies evaluating enzalutamide for treatment of AR+ tumors regardless of ER status, since it blocks both androgen- and estrogen- mediated tumor growth.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Receptores Androgénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Feniltiohidantoína/análogos & derivados , Anilidas/uso terapéutico , Animales , Antineoplásicos Hormonales/uso terapéutico , Apoptosis/efectos de los fármacos , Benzamidas , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Femenino , Humanos , Células MCF-7 , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Nitrilos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/uso terapéutico , Compuestos de Tosilo/uso terapéutico , Trasplante Heterólogo
20.
Horm Cancer ; 4(3): 140-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23479404

RESUMEN

Pregnancy-associated breast cancers (PABC) generally present at advanced stages and have a poor prognosis. The reasons are unclear but we hypothesized that the continuous high levels of estrogens and progesterone were involved. We have now carried out a detailed analysis of PABC compared to tumors of age-matched nonpregnant (non-PABC) women. Malignant epithelia and tumor-associated stroma of PABC and non-PABC were isolated by laser capture microdissection and gene expression profiled. Additionally, normal breast epithelia and stroma adjacent to the two tumor types were analyzed. Lastly, subsets of previously identified E- and P-regulated genes were defined in all tissues. We find that PABC signatures cluster with established breast cancer subtypes. Major hormone-regulated genes whose expression correlated with epithelia of PABC dealt with regulation of cell proliferation, metabolism, and tumor aggressiveness, including genes used to predict tumor recurrence. Compared to normal epithelia, a significant number of genes associated with cell cycle processes were enriched in PABC, many of which are hormone regulated. Thus, compared to normal epithelia, many of the genes that were differentially expressed in epithelia of PABC were distinct from those differentially expressed in non-PABC. With regard to the tumor microenvironment, immune-related genes were enriched in tumor-associated stroma of PABC. Compared to normal stroma, PABC-associated stroma overexpressed immune response genes, while genes involved in angiogenesis and extracellular matrix deposition were more commonly downregulated. This suggests that the heightened aggressiveness of PABC may involve a predisposition to metastasis through extracellular matrix degradation, plus angiogenesis independence. Moreover, genes encoding cell proliferative factors, signaling, immunomodulators and cell death, were hormone regulated in stroma. In sum, these analyses demonstrate complex patterns of enrichment and hormonal regulation of genes in PABC and suggest that it may have a distinct biological nature.


Asunto(s)
Neoplasias de la Mama/metabolismo , Epitelio/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Progesterona/metabolismo , Adulto , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Epitelio/patología , Femenino , Genoma Humano , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Embarazo , Complicaciones Neoplásicas del Embarazo/genética , Complicaciones Neoplásicas del Embarazo/patología , Células del Estroma/metabolismo , Células del Estroma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA