Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 188: 153-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880522

RESUMEN

Pancreatic cancer remains an unmet medical need. Late diagnosis and the lack of efficient treatment significantly impact the prognosis of patients suffering from pancreatic cancer. Improving patient outcomes requires a deeper comprehension of the tumor ecosystem. To achieve this, a thorough exploration of the tumor microenvironment using pre-clinical models that accurately replicate human disease is imperative, particularly in understanding the dynamics of immune cell subsets. Surprisingly, the impact of model variations on the composition of the tumor microenvironment has been largely neglected. In this study, we introduce an orthotopic model of pancreatic ductal adenocarcinoma and a spontaneous model of insulinoma. Our findings reveal striking differences in the innate lymphoid cell infiltrate, highlighting the importance of considering model-specific influences when investigating the tumor microenvironment.


Asunto(s)
Carcinoma Ductal Pancreático , Modelos Animales de Enfermedad , Inmunidad Innata , Linfocitos , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Ratones , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/inmunología , Linfocitos/inmunología , Humanos , Insulinoma/patología , Insulinoma/inmunología , Línea Celular Tumoral , Ratones Endogámicos C57BL
2.
Sci Immunol ; 9(95): eadj2654, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820141

RESUMEN

Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.


Asunto(s)
Inmunidad Innata , Pulmón , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas , Animales , Pulmón/inmunología , Pulmón/citología , Ratones , Inmunidad Innata/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Células Progenitoras Linfoides/inmunología , Células Progenitoras Linfoides/citología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Ratones Noqueados , Linfocitos/inmunología , Diferenciación Celular/inmunología , Proteínas de Unión al ADN , Factores de Transcripción
3.
Oncoimmunology ; 13(1): 2349347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746870

RESUMEN

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Asunto(s)
Carcinoma Epitelial de Ovario , Inmunidad Innata , Linfocitos Infiltrantes de Tumor , Melanoma , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Melanoma/inmunología , Melanoma/patología , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/patología , Linfocitos Infiltrantes de Tumor/inmunología , Microambiente Tumoral/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/patología , Receptor de Muerte Celular Programada 1/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/metabolismo , Proteína del Gen 3 de Activación de Linfocitos , Antígenos CD/metabolismo
4.
Mucosal Immunol ; 17(3): 371-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492744

RESUMEN

Interleukin-(IL) 22 production by intestinal group 3 innate lymphoid cells (ILC3) is critical to maintain gut homeostasis. However, IL-22 needs to be tightly controlled; reduced IL-22 expression is associated with intestinal epithelial barrier defect while its overexpression promotes tumor development. Here, using a single-cell ribonucleic acid sequencing approach, we identified a core set of genes associated with increased IL-22 production by ILC3. Among these genes, programmed cell death 1 (PD-1), extensively studied in the context of cancer and chronic infection, was constitutively expressed on a subset of ILC3. These cells, found in the crypt of the small intestine and colon, displayed superior capacity to produce IL-22. PD-1 expression on ILC3 was dependent on the microbiota and was induced during inflammation in response to IL-23 but, conversely, was reduced in the presence of Notch ligand. PD-1+ ILC3 exhibited distinct metabolic activity with increased glycolytic, lipid, and polyamine synthesis associated with augmented proliferation compared with their PD-1- counterparts. Further, PD-1+ ILC3 showed increased expression of mitochondrial antioxidant proteins which enable the cells to maintain their levels of reactive oxygen species. Loss of PD-1 signaling in ILC3 led to reduced IL-22 production in a cell-intrinsic manner. During inflammation, PD-1 expression was increased on natural cytotoxicity receptor (NCR)- ILC3 while deficiency in PD-1 expression resulted in increased susceptibility to experimental colitis and failure to maintain gut barrier integrity. Collectively, our findings uncover a new function of the PD-1 and highlight the role of PD-1 signaling in the maintenance of gut homeostasis mediated by ILC3 in mice.


Asunto(s)
Homeostasis , Inmunidad Innata , Interleucina-22 , Interleucinas , Linfocitos , Ratones Noqueados , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Transducción de Señal , Colitis/inmunología , Intestinos/inmunología , Ratones Endogámicos C57BL , Humanos , Modelos Animales de Enfermedad
5.
Pharmaceutics ; 15(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514187

RESUMEN

Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.

6.
Cell Death Dis ; 14(2): 111, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774342

RESUMEN

Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Necrosis/metabolismo , Células T Invariantes Asociadas a Mucosa/metabolismo , Muerte Celular , Hígado/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36301303

RESUMEN

Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.


Asunto(s)
Inmunidad Innata , Linfocitos , Subgrupos de Linfocitos T
8.
Front Immunol ; 13: 948358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032129

RESUMEN

Innate and adaptive immune cells monitor, recognize, and eliminate transformed cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key role in many facets of the immune response and have a profound impact on disease states, including cancer. ILCs regulate immune responses by responding and integrating a wide range of signals within the local microenvironment. As primarily tissue-resident cells, ILCs are ideally suited to sense malignant transformation and initiate anti-tumor immunity. However, as ILCs have been associated with anti-tumor and pro-tumor activities in established tumors, they could potentially have dual functions during carcinogenesis by promoting or suppressing the malignant outgrowth of premalignant lesions. Here we discuss emerging evidence that shows that ILCs can impact early tumor development by regulating immune responses against transformed cells, as well as the environmental cues that potentially induce ILC activation in premalignant lesions.


Asunto(s)
Inmunidad Innata , Neoplasias , Carcinogénesis , Humanos , Linfocitos , Microambiente Tumoral
9.
STAR Protoc ; 3(3): 101534, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35830307

RESUMEN

Innate lymphoid cells (ILCs) and adaptive T cells remain a challenge to study because of a significant overlap in their transcriptomic profiles. Here, we describe the adoptive transfer of ILC progenitors into mice genetically deficient in innate and adaptive immune cells to allow detailed study of the development and function of ILCs and gene regulation in an in vivo setting. For complete details on the use and execution of this protocol, please refer to Jacquelot et al. (2021) and Seillet et al. (2016).


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Médula Ósea , Células Progenitoras Linfoides , Ratones , Linfocitos T
11.
Cancers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35565201

RESUMEN

Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.

12.
Nat Immunol ; 23(3): 371-379, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35228695

RESUMEN

The innate lymphoid cell (ILC) family is composed of natural killer (NK) cells, ILC1, ILC2 and ILC3, which participate in immune responses to virus, bacteria, parasites and transformed cells. ILC1, ILC2 and ILC3 subsets are mostly tissue-resident, and are profoundly imprinted by their organ of residence. They exhibit pleiotropic effects, driving seemingly paradoxical responses such as tissue repair and, alternatively, immunopathology toward allergens and promotion of tumorigenesis. Despite this, a trickle of studies now suggests that non-NK ILCs may not be overwhelmingly tumorigenic and could potentially be harnessed to drive anti-tumor responses. Here, we examine the pleiotropic behavior of ILCs in cancer and begin to unravel the gap in our knowledge that exposes a new horizon for thinking about modifying ILCs and targeting them for immunotherapy.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Inmunoterapia , Células Asesinas Naturales , Linfocitos
14.
Cancers (Basel) ; 13(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885076

RESUMEN

Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.

15.
Sci Immunol ; 6(63): eabf7268, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533976

RESUMEN

Dendritic cells (DCs) and macrophages are at the forefront of immune responses, modifying their transcriptional programs in response to their tissue environment or immunological challenge. Posttranslational modifications of histones, such as histone H3 lysine-27 trimethylation (H3K27me3) by the Polycomb repressive complex 2 (PRC2), are tightly associated with epigenetic regulation of gene expression. To explore whether H3K27me3 is involved in either the establishment or function of the mononuclear phagocyte system, we selectively deleted core components of PRC2, either EZH2 or SUZ12, in CD11c-expressing myeloid cells. Unexpectedly, EZH2 deficiency neither prevented the deposition and maintenance of H3K27me3 in DCs nor hindered DC/macrophage homeostasis. In contrast, SUZ12 deficiency markedly impaired the capacity of DCs and macrophages to maintain H3K27me3. SUZ12 ablation induced a rapid loss of the alveolar macrophage and Langerhans cell networks under both steady state and inflammatory conditions because these cells could no longer proliferate to facilitate their self-renewal. Despite the reduced H3K27me3, DC development and function were unaffected by SUZ12 ablation, suggesting that PRC2-mediated gene repression was dispensable for DC homeostasis. Thus, the role of SUZ12 highlights the fundamentally different homeostatic mechanisms used by tissue-resident myeloid cells versus DCs.


Asunto(s)
Células Dendríticas/inmunología , Homeostasis/inmunología , Células Mieloides/inmunología , Complejo Represivo Polycomb 2/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejo Represivo Polycomb 2/deficiencia
16.
Cancer Res ; 81(21): 5555-5571, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34429328

RESUMEN

The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Eosinófilos/inmunología , Neoplasias Pulmonares/inmunología , Receptores CCR3/fisiología , Microambiente Tumoral , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445750

RESUMEN

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect "stressed cells' such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Células Asesinas Naturales/fisiología , Neoplasias Hepáticas/inmunología , Animales , Carcinoma Hepatocelular/terapia , Humanos , Inmunoterapia , Hígado/inmunología , Neoplasias Hepáticas/terapia , Subgrupos Linfocitarios/fisiología
18.
Oncoimmunology ; 10(1): 1943168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239775

RESUMEN

Immunity to melanoma is thought to be mainly mediated by adaptive immune cells. To what extent innate immunity, particularly innate lymphoid cells, drive the immune response and impact melanoma prognosis and therapeutic responsiveness is not well understood. In a recent article published in Nature Immunology, we uncovered a critical role that ILC2 play in the control of melanoma. Using both complementary mouse models and human samples, we showed that ILC2-derived granulocyte macrophage-colony stimulating factor (GM-CSF) drives eosinophil tumor recruitment and activation. We found that ILC2 express PD-1 which inhibits ILC2 effector function and impairs anti-tumor responses. We further demonstrated that the combination of IL-33 and anti-PD-1 blocking antibodies improved anti-tumor responses through the expansion of splenic and tumor-infiltrating ILC2 and eosinophils. These findings have revealed an essential mechanism involving ILC2 and eosinophils necessary for anti-melanoma immunity and immunotherapy responses.


Asunto(s)
Inmunidad Innata , Melanoma , Eosinófilos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Linfocitos , Melanoma/tratamiento farmacológico
19.
Nat Immunol ; 22(7): 851-864, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099918

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Asunto(s)
Anticuerpos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Interleucina-33/farmacología , Linfocitos/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Quimiotaxis de Leucocito/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Eosinófilos/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo
20.
Front Neurosci ; 15: 657081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994930

RESUMEN

The Earth's rotation around its axis, is one of the parameters that never changed since life emerged. Therefore, most of the organisms from the cyanobacteria to humans have conserved natural oscillations to regulate their physiology. These daily oscillations define the circadian rhythms that set the biological clock for almost all physiological processes of an organism. They allow the organisms to anticipate and respond behaviorally and physiologically to changes imposed by the day/night cycle. As other physiological systems, the immune system is also regulated by circadian rhythms and while diurnal variation in host immune responses to lethal infection have been observed for many decades, the underlying mechanisms that affect immune function and health have only just started to emerge. These oscillations are generated by the central clock in our brain, but neuroendocrine signals allow the synchronization of the clocks in peripheral tissues. In this review, we discuss how the neuroimmune interactions create a rhythmic activity of the innate lymphoid cells. We highlight how the disruption of these rhythmic regulations of immune cells can disturb homeostasis and lead to the development of chronic inflammation in murine models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...