Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 286, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090543

RESUMEN

BACKGROUND: Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS: Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS: The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.


Asunto(s)
Ácidos y Sales Biliares , Ácido Cólico , Ácido Cólico/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ratones , Humanos , Clostridium/metabolismo , Clostridium/genética , Regulación Bacteriana de la Expresión Génica , Hidroxilación , Operón , Ácido Quenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Microbioma Gastrointestinal
2.
Front Microbiol ; 15: 1359677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690357

RESUMEN

The activity of subsurface microorganisms can be harnessed for engineering projects. For instance, the Swiss radioactive waste repository design can take advantage of indigenous microorganisms to tackle the issue of a hydrogen gas (H2) phase pressure build-up. After repository closure, it is expected that anoxic steel corrosion of waste canisters will lead to an H2 accumulation. This occurrence should be avoided to preclude damage to the structural integrity of the host rock. In the Swiss design, the repository access galleries will be back-filled, and the choice of this material provides an opportunity to select conditions for the microbially-mediated removal of excess gas. Here, we investigate the microbial sinks for H2. Four reactors containing an 80/20 (w/w) mixture of quartz sand and Wyoming bentonite were supplied with natural sulfate-rich Opalinus Clay rock porewater and with pure H2 gas for up to 108 days. Within 14 days, a decrease in the sulfate concentration was observed, indicating the activity of the sulfate-reducing bacteria detected in the reactor, e.g., from Desulfocurvibacter genus. Additionally, starting at day 28, methane was detected in the gas phase, suggesting the activity of methanogens present in the solid phase, such as the Methanosarcina genus. This work evidences the development, under in-situ relevant conditions, of a backfill microbiome capable of consuming H2 and demonstrates its potential to contribute positively to the long-term safety of a radioactive waste repository.

3.
ISME J ; 16(7): 1740-1749, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35338334

RESUMEN

Soil microbiomes harbour unparalleled functional and phylogenetic diversity. However, extracting isolates with a targeted function from complex microbiomes is not straightforward, particularly if the associated phenotype does not lend itself to high-throughput screening. Here, we tackle the methylation of arsenic (As) in anoxic soils. As methylation was proposed to be catalysed by sulfate-reducing bacteria. However, to date, there are no available anaerobic isolates capable of As methylation, whether sulfate-reducing or otherwise. The isolation of such a microorganism has been thwarted by the fact that the anaerobic bacteria harbouring a functional arsenite S-adenosylmethionine methyltransferase (ArsM) tested to date did not methylate As in pure culture. Additionally, fortuitous As methylation can result from the release of non-specific methyltransferases upon lysis. Thus, we combined metagenomics, metatranscriptomics, and metaproteomics to identify the microorganisms actively methylating As in anoxic soil-derived microbial cultures. Based on the metagenome-assembled genomes of microorganisms expressing ArsM, we isolated Paraclostridium sp. strain EML, which was confirmed to actively methylate As anaerobically. This work is an example of the application of meta-omics to the isolation of elusive microorganisms.


Asunto(s)
Arsénico , Anaerobiosis , Bacterias Anaerobias/genética , Filogenia , Suelo , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...