Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1243863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842081

RESUMEN

The single cell RNA sequencing technique has been particularly used during the last years, allowing major discoveries. However, the widespread application of this analysis has showed limitations. Indeed, the direct study of fresh tissues is not always feasible, notably in the case of genetically engineered mouse embryo or sensitive tissues whose integrity is affected by classical digestion methods. To overcome these limitations, single nucleus RNA sequencing offers the possibility to work with frozen samples. Thus, single nucleus RNA sequencing can be performed after genotyping-based selection on samples stocked in tissue bank and is applicable to retrospective studies. Therefore, this technique opens the field to a wide range of applications requiring adapted protocols for nucleus isolation according to the tissue considered. Here we developed a protocol of nucleus isolation from frozen murine placenta and pancreas. These two complex tissues were submitted to a combination of enzymatic and manual dissociation before undergoing different steps of washing and centrifugation. The entire protocol was performed with products usually present in a research lab. Before starting the sequencing process, nuclei were sorted by flow cytometry. The results obtained validate the efficiency of this protocol which is easy to set up and does not require the use of commercial kits. This specificity makes it adaptable to different organs and species. The association of this protocol with single nucleus RNA sequencing allows the study of complex samples that resist classical lysis methods due to the presence of fibrotic or fatty tissue, such as fibrotic kidney, tumors, embryonic tissues or fatty pancreas.

2.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497580

RESUMEN

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Asunto(s)
Orientación del Axón , Arteria Hepática , Animales , Ratones , Conductos Biliares , Morfogénesis , Silenciador del Gen
3.
Front Cell Dev Biol ; 10: 995013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238685

RESUMEN

KRAS mutants are common in many cancers and wild-type KRAS is essential in development as its absence causes embryonic lethality. Despite this critical role in development and disease, the normal expression pattern of KRAS protein is still largely unknown at the tissue level due to the lack of valid antibodies. To address this issue, we used the citrine-Kras mouse model in which the Citrine-KRAS (Cit-K) fusion protein functions as a validated surrogate of endogenous KRAS protein that can be detected on tissue sections by immunolabeling with a GFP antibody. In the embryo, we found expression of KRAS protein in a wide range of organs and tissues. This expression tends to decrease near birth, mainly in mesenchymal cells. During transition to the adult stage, the dynamics of KRAS protein expression vary among organs and detection of KRAS becomes restricted to specific cell types. Furthermore, we found that steady state KRAS protein expression is detectable at the cell membrane and in the cytoplasm and that this subcellular partitioning differed among cell types. Our results reveal hitherto unanticipated dynamics in developmental, tissular, cell-specific and subcellular expression of KRAS protein. They provide insight into the reason why specific cell-types are sensitive to KRAS mutations during cancer initiation.

4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947990

RESUMEN

KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.


Asunto(s)
Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Antioxidants (Basel) ; 10(7)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34356340

RESUMEN

Pancreatitis, an inflammation of the pancreas, appears to be a main driver of pancreatic cancer when combined with Kras mutations. In this context, the exact redox mechanisms are not clearly elucidated. Herein, we treated mice expressing a KrasG12D mutation in pancreatic acinar cells with cerulein to induce acute pancreatitis. In the presence of KrasG12D, pancreatitis triggered significantly greater redox unbalance and oxidative damages compared to control mice expressing wild-type Kras alleles. Further analyses identified the disruption in glutathione metabolism as the main redox event occurring during pancreatitis. Compared to the wild-type background, KrasG12D-bearing mice showed a greater responsiveness to treatment with a thiol-containing compound, N-acetylcysteine (NAC). Notably, NAC treatment increased the pancreatic glutathione pool, reduced systemic markers related to pancreatic and liver damages, limited the extent of pancreatic edema and fibrosis as well as reduced systemic and pancreatic oxidative damages. The protective effects of NAC were, at least, partly due to a decrease in the production of tumor necrosis factor-α (TNF-α) by acinar cells, which was concomitant with the inhibition of NF-κB(p65) nuclear translocation. Our data provide a rationale to use thiol-containing compounds as an adjuvant therapy to alleviate the severity of inflammation during pancreatitis and pancreatic tumorigenesis.

6.
Gut ; 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330784

RESUMEN

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

7.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917763

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with few therapeutic options. The identification of new promising targets is, therefore, an urgent need. Using available transcriptomic datasets, we first found that Peroxiredoxin-1 gene (PRDX1) expression was significantly increased in human pancreatic tumors, but not in the other gastrointestinal cancers; its high expression correlated with shortened patient survival. We confirmed by immunostaining on mouse pancreata the increased Peroxiredoxin-I protein (PRX-I) expression in pancreatic neoplastic lesions and PDAC. To question the role of PRX-I in pancreatic cancer, we genetically inactivated its expression in multiple human PDAC cell lines, using siRNA and CRISPR/Cas9. In both strategies, PRX-I ablation led to reduced survival of PDAC cells. This was mainly due to an increase in the production of reactive oxygen species (ROS), accumulation of oxidative DNA damage (i.e., 8-oxoguanine), and cell cycle blockade at G2/M. Finally, we found that PRX-I ablation disrupts the autophagic flux in PDAC cells, which is essential for their survival. This proof-of-concept study supports a pro-oncogenic role for PRX-I in PDAC.

8.
Hepatology ; 74(3): 1445-1460, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33768568

RESUMEN

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Carcinoma Ductal/genética , Colangiocarcinoma/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas Experimentales/genética , Ratones , Tensinas/genética , Animales , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinoma Ductal/inducido químicamente , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patología , Carcinoma Papilar/inducido químicamente , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangitis/inducido químicamente , Colangitis/complicaciones , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/toxicidad , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Tensinas/metabolismo
9.
Cell Death Differ ; 28(9): 2601-2615, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33762742

RESUMEN

Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non-genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in "Pathways of cancer" with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells. During mouse embryonic development, pre-acinar cells also transiently expressed MECOM and in the adult mouse pancreas, MECOM was re-expressed when mice were subjected to acute and chronic pancreatitis, conditions in which acinar cells dedifferentiate. In human cells and in mice, MECOM expression correlated with and was directly regulated by SOX9. Mouse acinar cells that, by genetic manipulation, lose the ability to upregulate MECOM showed impaired cell adhesion, more prominent acinar cell death, and suppressed acinar cell dedifferentiation by limited ERK signaling. In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.


Asunto(s)
Células Acinares/metabolismo , Muerte Celular/genética , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Oncogenes/genética , Animales , Desdiferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal
10.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33602788

RESUMEN

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Asunto(s)
Células Acinares/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas , Proliferación Celular , Modelos Animales de Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887255

RESUMEN

KRAS is a powerful oncogene responsible for the development of many cancers. Despite the great progress in understanding its function during the last decade, the study of KRAS expression, subcellular localization, and post-translational modifications remains technically challenging. Accordingly, many facets of KRAS biology are still unknown. Antibodies could be an effective and easy-to-use tool for in vitro and in vivo research on KRAS. Here, we generated a novel rabbit polyclonal antibody that allows immunolabeling of cells and tissues overexpressing KRAS. Cell transfection experiments with expression vectors for the members of the RAS family revealed a preferential specificity of this antibody for KRAS. In addition, KRAS was sensitively detected in a mouse tissue electroporated with an expression vector. Interestingly, our antibody was able to detect endogenous forms of unprenylated (immature) and prenylated (mature) KRAS in mouse organs. We found that KRAS prenylation was increased ex vivo and in vivo in a model of KRASG12D-driven tumorigenesis, which was concomitant with an induction of expression of essential KRAS prenylation enzymes. Therefore, our tool helped us to put the light on new regulations of KRAS activation during cancer initiation. The use of this tool by the RAS community could contribute to discovering novel aspects of KRAS biology.


Asunto(s)
Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Prenilación de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Animales , Formación de Anticuerpos , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Conejos , Células Tumorales Cultivadas
12.
Sci Rep ; 10(1): 5241, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251323

RESUMEN

Earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) requires better understanding of the mechanisms driving tumorigenesis. In this context, depletion of Epidermal Growth Factor Receptor (EGFR) is known to impair development of PDAC-initiating lesions called acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN). In contrast, the role of v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), the preferred dimerization partner of EGFR, remains poorly understood. Here, using a mouse model with inactivation of Erbb2 in pancreatic acinar cells, we found that Erbb2 is dispensable for inflammation- and KRasG12D-induced development of ADM and PanIN. A mathematical model of EGFR/ERBB2-KRAS signaling, which was calibrated on mouse and human data, supported the observed roles of EGFR and ERBB2. However, this model also predicted that overexpression of ERBB2 stimulates ERBB/KRAS signaling; this prediction was validated experimentally. We conclude that EGFR and ERBB2 differentially impact ERBB signaling during PDAC tumorigenesis, and that the oncogenic potential of ERBB2 is only manifested when it is overexpressed. Therefore, the level of ERBB2, not only its mere presence, needs to be considered when designing therapies targeting ERBB signaling.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Receptores ErbB/genética , Neoplasias Pancreáticas/patología , Receptor ErbB-2/genética , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Mutantes , Ratones Transgénicos , Modelos Teóricos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/genética
13.
Gut ; 69(4): 704-714, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31154393

RESUMEN

OBJECTIVE: Pancreatic cancer can arise from precursor lesions called intraductal papillary mucinous neoplasms (IPMN), which are characterised by cysts containing papillae and mucus-producing cells. The high frequency of KRAS mutations in IPMN and histological analyses suggest that oncogenic KRAS drives IPMN development from pancreatic duct cells. However, induction of Kras mutation in ductal cells is not sufficient to generate IPMN, and formal proof of a ductal origin of IPMN is still missing. Here we explore whether combining oncogenic KrasG12D mutation with an additional gene mutation known to occur in human IPMN can induce IPMN from pancreatic duct cells. DESIGN: We created and phenotyped mouse models in which mutations in Kras and in the tumour suppressor gene liver kinase B1 (Lkb1/Stk11) are conditionally induced in pancreatic ducts using Cre-mediated gene recombination. We also tested the effect of ß-catenin inhibition during formation of the lesions. RESULTS: Activating KrasG12D mutation and Lkb1 inactivation synergised to induce IPMN, mainly of gastric type and with malignant potential. The mouse lesions shared several features with human IPMN. Time course analysis suggested that IPMN developed from intraductal papillae and glandular neoplasms, which both derived from the epithelium lining large pancreatic ducts. ß-catenin was required for the development of glandular neoplasms and subsequent development of the mucinous cells in IPMN. Instead, the lack of ß-catenin did not impede formation of intraductal papillae and their progression to papillary lesions in IPMN. CONCLUSION: Our work demonstrates that IPMN can result from synergy between KrasG12D mutation and inactivation of a tumour suppressor gene. The ductal epithelium can give rise to glandular neoplasms and papillary lesions, which probably both contribute to IPMN formation.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Mutación/genética , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Intraductales Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas Activadas por AMP , Adenocarcinoma Mucinoso/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Factores de Tiempo
14.
Gene Expr ; 18(3): 149-155, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-29580319

RESUMEN

The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.


Asunto(s)
Carcinogénesis , Carcinoma/etiología , Neoplasias Hepáticas/etiología , Hígado/embriología , Páncreas/embriología , Neoplasias Pancreáticas/etiología , Animales , Linaje de la Célula , Humanos , Hígado/metabolismo , Páncreas/metabolismo
15.
Front Physiol ; 9: 129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535635

RESUMEN

The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 µg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.

16.
Differentiation ; 91(1-3): 42-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26856660

RESUMEN

Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that ß-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when ß-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of ß-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that ß-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling.


Asunto(s)
Conductos Biliares/crecimiento & desarrollo , Hígado/crecimiento & desarrollo , Morfogénesis/genética , beta Catenina/genética , Animales , Conductos Biliares/citología , Conductos Biliares/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones
17.
Anal Biochem ; 500: 60-2, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26896683

RESUMEN

Extracting RNA from pancreatic tissue is notoriously challenging because of the organ's high RNase content. Standard methods using TriPure or TRIzol classically yield RNA of sufficient quality for routine gene expression analysis but not for microarray or deep sequencing analysis. Here we developed a simple method to extract high-quality RNA from mouse pancreas. Our method uses an RNase inhibitor and combines different protocols using guanidium thiocyanate-phenol extraction. It enables reproducible isolation of RNA with an RNA integrity number around 9.


Asunto(s)
Páncreas/química , ARN Neoplásico/aislamiento & purificación , Animales , Humanos , Ratones
19.
Hum Mol Genet ; 25(22): 5017-5026, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159992

RESUMEN

Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.


Asunto(s)
Cilios/patología , Factor Nuclear 6 del Hepatocito/metabolismo , Pancreatitis Crónica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis/fisiología , Diferenciación Celular , Cilios/genética , Células Epiteliales/patología , Factor Nuclear 6 del Hepatocito/genética , Lipomatosis/genética , Lipomatosis/metabolismo , Metaplasia/genética , Metaplasia/metabolismo , Ratones , Páncreas/patología , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Pancreatitis Crónica/genética , Proteínas Serina-Treonina Quinasas/genética
20.
Dev Biol ; 404(2): 136-48, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26033091

RESUMEN

In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-ß, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9.


Asunto(s)
Conductos Biliares Intrahepáticos/embriología , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXC/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Hippo , Laminina/metabolismo , Ratones , Ratones Noqueados , Organogénesis/genética , Fosfoproteínas/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores Notch/biosíntesis , Factor de Transcripción SOX9/biosíntesis , Factores de Transcripción SOXC/biosíntesis , Factor de Crecimiento Transformador beta/biosíntesis , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...